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Abstract

Exploration is a fundamental aspect of learning from trial-and-error for two main rea-

sons. First, in this type of learning, the feedback provided for agents on their decisions

is often sparse, delayed, and partial; and second, the very distribution of observations

available for agents depends on their own behavior. These two important factors differ-

entiate learning by trial-and-error from learning with direct supervision, where in the

latter a “teacher” is responsible both for providing the target responses (full feedback),

as well as for sampling the learning examples or observations. Thus, agents learning

by trial-and-error need to guarantee that their behavior provide a diverse set of exam-

ples, representative of the true underlying task or environment; in other words – they

need to explore their environment. Exploration, however, is challenging. It is particu-

larly challenging in complex environments, where decisions typically have long-term

(exploratory) consequences, which should be taken into account. Thus, learning of the

environment is required in order to effectively explore it, but such learning requires,

by itself, exploration of the environment.

The first part of this thesis describes two algorithmic approaches that deal with that

challenge. One is an uncertainty-driven exploration mechanism, relying on the intu-

ition that this challenge of “learning to explore” is analogous to the challenge of learn-

ing a value-function in Reinforcement Learning problems. The method constructs an

“exploration value function” (E-value), that can be learned online from observations
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and behavior, and serves as a measure for missing knowledge, or uncertainty, of in-

dividual state-actions. It is further shown that E-values can be applied for large (or

continuous) state-space problems, using function approximation techniques. The sec-

ond approach is a normative one, in which optimal exploration is defined as the one

maximizing a particular objective – the entropy of the visitation distribution over the

states and actions, induced by the behavioral policy. Solving this optimization problem

generates non-trivial policies even in the complete absence of external rewards, as well

as in the absence of learning – hence solving the problem of “planning to explore”, if a

complete knowledge of the environment is given. In the more realistic regime where

learning is required, it is shown how the (approximately) optimal exploration policy

can be learned from observations.

The second part of this thesis studies human exploratory behavior in light of the com-

putational principles identified by the models. For that end, human exploration was

evaluated in a set of complex environments, in which long-term consequences of ac-

tions exist in the first place. It is shown that human exploration is indeed sensitive

to such consequences, suggesting exploration strategies that propagate uncertainties

over states and actions, going beyond local measures of uncertainty. Several aspects

of human behavior in this task, including some related to learning dynamics, can be

well accounted for using the E-values model.
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Chapter 1

Introduction

אשכחתיה, בחרובא עלמא

לבראי נמי שתלי אבהתי לי דשתלי היכי כי

כג,א תענית

1.1 Reinforcement Learning

The ability to learn rich purposeful behaviors is a hallmark of both animal and human
cognition. Understanding how do humans and animals learn – by trial-and-error, in
unknown environments, and without direct supervision – has been a fundamental
question in psychology, cognitive sciences, and neuroscience for over a century. At the
same time, designing systems that can learn similarly, based on their own “experience”
of trial-and-error, has long been a motivating goal in the fields of Artificial Intelligence
and Machine Learning.

The computational framework of Reinforcement Learning (RL) provides one possible
formal point of contact between these two efforts (Sutton and Barto, 2018; Kaelbling
et al., 1996). RL offers a set of abstractions, techniques, and algorithms, to analyze,
and construct, different forms of trial-and-error learning. It combines concepts from
control theory and optimization with concepts from machine learning, resulting in a
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flexible framework that can be used to model behavior in a broad range of tasks, from
game-playing (Tesauro, 1992; Mnih et al., 2015; Silver et al., 2017), to robotics (Gu et al.,
2017), to the control of nuclear reactors (Degrave et al., 2022). Concepts and ideas from
RL theory have also been influential in neuroscience and cognitive sciences, for study-
ing both behavior and its underlying neural basis (Schultz et al., 1997; Glimcher, 2011).
One reason for that success is that RL models offer a formalization of fundamental
psychological principles (Dayan and Niv, 2008; Niv, 2009; Mongillo et al., 2014), hence
supporting the generation of precise and quantitative predictions concerning behav-
ior and learning in diverse general environments or conditions. Moreover, the theory
can provide a normative explanation for behavior, allowing to compare it with optimal
solutions.

The modern “canonical” formulation of the RL problem is that of a Markov Decision
Process, or MDP (Puterman, 1994). An MDP models the iterative interaction between
an agent and an environment. At each time-step, the agent observes the current state of
the environment, and chooses an action. In response to that action, the environment
transfers to the next state, and provides a reward signal. The Markovian assumption
in MDPs is that both the transition to the next state and the reward (both of which
can be probabilistic) are conditionally independent of past states and actions, given the
current state and action. The objective for the agent is to find an optimal policy – a
mapping from states to actions – such as to maximize the expected cumulative (and
often temporally-discounted) reward.

Compared to the Supervised Learning (SL) scenario, RL presents a set of unique chal-
lenges, stemming from the more complicated properties of the agent-environment in-
teraction. First, unlike the typical SL scenario, RL tasks are often temporally (and
spatially) structured, such that observations made by the agent at different time-steps
are not independent and identically distributed (i.i.d). Second, in RL the agent receives
only partial feedback from environment, unlike the SL case in which the “teacher”
provides the correct response for each observation (Sutton, 1992). Finally, in RL the
distribution of examples available for the agent crucially depends on the agent’s own
behavioral policy, while in SL the examples are sampled from some (fixed, unknown)
underlying distribution, independently of the agent’s performance.
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1.2 Exploration: an Overview

These challenges, and in particular the last one, make exploration a crucial component
of RL. Put simply, in order to learn an optimal policy, the agent must take into account
the fact that observations collected so far might be mis-representative of the true task.

The requirement for exploration is often discussed in the context of the exploration-
exploitation dilemma. The dilemma presents itself in the online learning case, where
the agent’s goal is to simultaneously maximize reward while learning. In that case,
there is, on the one hand, an incentive to repeat actions that have already been proven
to be beneficial, i.e., exploiting current knowledge. On the other hand, choosing solely
based on current knowledge might be suboptimal, because there could be other actions
which are better, but are not yet recognized as such. Therefore, exploration is also
necessary, even at the expense of temporary collecting more reward.

Despite much attention given to it, the exploration-exploitation dilemma is not the
only exploration-related challenge in RL. Indeed, for the reasons mentioned before,
exploration is required even in an “offline learning” settings in which the agent per-
formance is not evaluated concurrently with its learning. In that case, even if there
is no need to answer the question of when to explore (i.e., balancing exploration with
exploitation), there is still the question of how to explore. This question, in turn, yields
its own “dilemma”, which we here term the exploration conundrum: In order to ef-
fectively explore, the agent needs knowledge about the environment; but to gain such
knowledge the agent needs to effectively explore it in the first place.

Oneway to overcome this problem is to give up on the “effective” part of exploration. A
straightforward implementation is to add a random component to the behavior, a tech-
nique known as random exploration. By adding randomness, the agent can typically
guarantee that all reachable states and actions will, eventually, be visited. However,
random exploration can be prohibitively slow and inefficient. Therefore, a second way
to overcome the said problem is to have the agent “learning to explore”. To do so, the
agent has to track, estimate, and update any quantity that can be used to determine
what actions are valuable from an exploratory point of view. By prioritizing such
actions the agent can actively direct its exploration towards useful states or actions,
resulting in what is often termed directed exploration (Thrun, 1992).
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Despite the contrast in names, directed exploration can be manifested as a random
policy, and does not have to be deterministic. Rather, the main difference is whether
the exploratory “component” of behavior is adaptive, and relies on some information
already collected by the agent, or is it a simple random-walk like policy. The natural
question to follow is, therefore: What kind of information can be useful to direct ex-
ploration? Different answers have been proposed for that question, spanning a wide
range of ideas. These include measures of novelty or surprisal (Pathak et al., 2017),
visit-counters (Auer et al., 2002; Kolter and Ng, 2009; Bellemare et al., 2016; Ostrovski
et al., 2017; Tang et al., 2017), prediction-errors (Tokic and Palm, 2011; Burda et al.,
2019), and information-theoretic quantities such as information gain (Still and Precup,
2012; Little and Sommer, 2014; Houthooft et al., 2016). Broadly speaking, the moti-
vation behind such measures is to represent some form of uncertainty the agent has
about the environment.1

A key observation for the works presented in this thesis is that useful measures for
exploration must take into account the long-term consequences of actions, and not only
their immediate outcomes. This is due to the fact that in complex environments, the un-
certainty structure can be complex: in order to fully learn about a given state-action,
the agent has to sufficiently explore the other reachable state-actions that follow it.
This general principle is relevant regardless of the particular exploration measure em-
ployed by the agent. Indeed, it will be shown how this general idea can be incorpo-
rated both in the context of counter-based exploration (Chapter 2) and in the context
of information-theoretic objectives for exploration (Chapter 3).

Accounting for the long-term exploratory consequences of actions is challenging. On
the algorithmic side, it requires models that propagate uncertainty along states and ac-
tions, and represent “global” quantities which are sensitive to the environment struc-
ture. On the experimental side, studying whether and how humans implement such
strategies requires appropriate experimental paradigms, inwhich long-term exploratory
consequences are present in the task to begin with. This thesis consists of two parts,

1As opposed to uncertainty that is due to a stochastic nature of the environment itself, which in general

cannot be resolved by exploration. Uncertainty due to missing knowledge on the agent part is known as

epistemic uncertainty, while that due to stochasticity is known as aleatoric uncertainty. However, in what

follows we will not make much use of these terms.
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aimed at addressing both type of challenges. The first part, which includes Chapters 2
and 3, deals with the algorithmic and computational aspects, and form the theoretical
contribution of this work. The second part, which includes Appendix A and Chapter 4,
deals with the application of the models to study exploratory behavior in humans.

1.3 Computational Modeling

The challenge of learning about the long-term consequences of exploration resembles
the standard challenge in RL of learning about delayed rewards. Indeed, as the goal
in RL is typically to maximize the expected cumulative reward, learning about the
immediate rewards alone is insufficient, and instead RL algorithms integrate reward
information over trajectories in order to learn an optimal policy. This analogy suggests
that standard RL techniques, used for learning about reward maximization, could po-
tentially also be useful for learning about exploration.

In Chapter 2, we build on this intuition and present a method for learning an “ex-
ploration value-function”. The resulting values, termed E-values, serves as a general-
ization of the familiar visit-counters. While visit-counters are local, measuring only
the immediate outcomes of each state-action (i.e., the number of times it has been vi-
sisted), our “generalized counters” are sensitive to long-term outcomes such that in
actions leading to many future potential states, each (actual) visit contributes less to
the generalized visit-counter, compared to each visit of an action that only leads to
fewer future states. This property makes E-values a useful measure for directed ex-
ploration in complex environments, in which standard visit-counters can be a poor
measure of uncertainty.

Another limitation of standard visit-counters that is alleviated by E-values is applica-
bility for problems with large or continuous state spaces. In such problems, standard
visit-counters, being a “tabular” method, are impractical, as some generalization over
states is essential. Because learning E-values is mathematically equivalent to learning
a (particular) Value function in anMDP, it can be readily applied to large or continuous
state-space problems by using function approximation techniques.

The E-values method can be thought of as a particular form of intrinsic motivation,
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a concept which is deeply connected to that of directed exploration. Broadly speak-
ing, the intrinsic motivation idea is that besides the external reward, there are addi-
tional factors driving the agent learning and behavior (Schmidhuber, 1991; Storck et al.,
1995; Oudeyer and Kaplan, 2009; Barto, 2013). Intrinsically-motivated agents can gen-
erate non-trivial exploratory policies even in the complete absence of external rewards.
However, exploration in these methods will generally depend on the agent “epistemic
state”; that is, the learning process and the information collected by the agent so far.

In Chapter 3 we take a step further and ask whether exploration can be guided by a
well-defined objective, which is independent both of external rewards and of a par-
ticular state in a learning process. Such normative approach for pure exploration can
be applied even in the somewhat-extreme case of complete environmental knowledge.
The problem then becomes planning to explore rather than learning to explore – again
analogous to the optimal-control problems underlying RL. In the learning regime, an
objective function for exploration can guide the agent by providing a well-defined,
stationary, target for behavior, which does not itself change as learning progresses.

We propose an objective function for optimal exploration based on the information-
theoretical concept of a maximum-entropy distribution. Crucially, the distribution
whose entropy we seek to maximize is the distribution over visited state-actions in-
duced by the policy, and not the entropy of the policy itself. While the latter is a local
objective, which in the absence of reward will simply result in a uniform random ex-
ploration, the former is a global measure which is highly sensitive to the environment
structure. Indeed, the resulting optimal exploration policies are structured and highly
non-trivial even in the absence of any external reward.

1.4 Human Behavior

Appendix A bridges between the two parts of this thesis. We discuss the applicabil-
ity of computational models of exploration from RL to the study of human behavior.
Under experimental perspective, the role of the computational models changes – we
require of them not only to be able to solve the task at hand, but also to provide a good
or useful description of the way humans solve it. What makes a description “good” is
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a complicated question, and we focus on the ability to identify, based on model predic-
tions, different principles that are manifested in human exploration. One reason this
might be challenging is that in the theory, the assumptions (either implicit or explicit)
that are built into the agents and algorithms are congruent with the actual nature of
the task. Humans, on the other hand, have their own internal andmental models of the
world, including the world of laboratory experiments, and these might be incongru-
ent with the task design as intended by the researcher. We point out some particular
examples and implications of this general issue for the study of exploratory behavior.

Another issue we discuss is that sometimes the task itself might not be rich enough to
enable the detection of some principles in the first place. As such, a major shortcoming
of prior studies of human exploration is their almost exclusive use of the multi-armed
bandit problem as the experimental paradigm. Specifically, in a bandit problem ac-
tions do not have long-term consequences, since the environment is characterized by
a single state. Therefore, the extent to which humans rely on more global measures
and strategies of exploration (of the form discussed previously) cannot be determined
by studying their behavior in bandit tasks alone.

In Chapter 4 we take a step towards solving this limitation. We study human ex-
ploration behavior using a novel experimental task, that goes beyond the bandit. In
our task actions have long-term exploratory consequences, and it is designed such
that “local” exploration techniques (e.g., counter-based) and more “global” exploration
techniques (e.g., E-values) have opposing predictions regarding behavior. Using this
task we are able to show that human exploration is in fact sensitive to long-term ex-
ploratory consequences. These findings provide a new perspective for previous works
that demonstrated directed exploration of humans in bandit tasks. The specific strate-
gies (e.g., counter-based) identified in bandit tasks might only be a special case im-
plementation of more general principles underlying human exploration: tracking and
propagating uncertainties over states and actions, and using this uncertainty to guide
exploration.

Finally, we use the E-values model (from Chapter 2) to study the patterns of learning
dynamics human participants exhibit in this task. We discuss some aspects of human
behavior which remains unexplained by this model alone, most notably their rapid
learning in this task.
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ABSTRACT

Exploration is a fundamental aspect of Reinforcement Learning, typically imple-
mented using stochastic action-selection. Exploration, however, can be more effi-
cient if directed toward gaining new world knowledge. Visit-counters have been
proven useful both in practice and in theory for directed exploration. However, a
major limitation of counters is their locality. While there are a few model-based
solutions to this shortcoming, a model-free approach is still missing. We propose
E-values, a generalization of counters that can be used to evaluate the propagat-
ing exploratory value over state-action trajectories. We compare our approach to
commonly used RL techniques, and show that using E-values improves learning
and performance over traditional counters. We also show how our method can be
implemented with function approximation to efficiently learn continuous MDPs.
We demonstrate this by showing that our approach surpasses state of the art per-
formance in the Freeway Atari 2600 game.

1 INTRODUCTION

”If there’s a place you gotta go - I’m the one you need to know.“
(Map, Dora The Explorer)

We consider Reinforcement Learning in a Markov Decision Process (MDP). An MDP is a five-
tuple M = (S,A, P,R, γ) where S is a set of states and A is a set of actions. The dynamics of
the process is given by P (s′|s, a) which denotes the transition probability from state s to state s′
following action a. Each such transition also has a distribution R (r|s, a) from which the reward for
such transitions is sampled. Given a policy π : S → A, a function – possibly stochastic – deciding
which actions to take in each of the states, the state-action value functionQπ : S ×A → R satisfies:

Qπ (s, a) = E
r,s′∼R×P (·|s,a)

[r + γQπ (s′, π (s′))]

where γ is the discount factor. The agent’s goal is to find an optimal policy π∗ that maximizes
Qπ (s, π (s)). For brevity, Qπ

∗
, Q∗. There are two main approaches for learning π∗. The first

is a model-based approach, where the agent learns an internal model of the MDP (namely P and
R). Given a model, the optimal policy could be found using dynamic programming methods such
as Value Iteration (Sutton & Barto, 1998). The alternative is a model-free approach, where the agent
learns only the value function of states or state-action pairs, without learning a model (Kaelbling
et al., 1996)1.

∗These authors contributed equally to this work
1Supplementary code for this paper can be found at https://github.com/borgr/DORA/
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The ideas put forward in this paper are relevant to any model-free learning of MDPs. For con-
creteness, we focus on a particular example, Q-Learning (Watkins & Dayan, 1992; Sutton & Barto,
1998). Q-Learning is a common method for learning Q∗, where the agent iteratively updates its
values of Q (s, a) by performing actions and observing their outcomes. At each step the agent takes
action at then it is transferred from st to st+1 and observe reward r. Then it applies the update rule
regulated by a learning rate α:

Q (st, at)← (1− α)Q (st, at) + α
(
r + γmax

a
Q (st+1, a)

)
.

1.1 EXPLORATION AND EXPLOITATION

Balancing between Exploration and Exploitation is a major challenge in Reinforcement Learning.
Seemingly, the agent may want to choose the alternative associated with the highest expected reward,
a behavior known as exploitation. However, in that case it may fail to learn that there are better
options. Therefore exploration, namely the taking of new actions and the visit of new states, may
also be beneficial. It is important to note that exploitation is also inherently relevant for learning, as
we want the agent to have better estimations of the values of valuable state-actions and we care less
about the exact values of actions that the agent already knows to be clearly inferior.

Formally, to guarantee convergence toQ∗, the Q-Learning algorithm must visit each state-action pair
infinitely many times. A naive random walk exploration is sufficient for converging asymptotically.
However, such random exploration has two major limitations when the learning process is finite.
First, the agent would not utilize its current knowledge about the world to guide its exploration. For
example, an action with a known disastrous outcome will be explored over and over again. Second,
the agent would not be biased in favor of exploring unvisited trajectories more than the visited ones
– hence ”wasting” exploration resources on actions and trajectories which are already well known
to it.

A widely used method for dealing with the first problem is the ε-greedy schema (Sutton & Barto,
1998), in which with probability 1 − ε the agent greedily chooses the best action (according to
current estimation), and with probability ε it chooses a random action. Another popular alternative,
emphasizing the preference to learn about actions associated with higher rewards, is to draw actions
from a Boltzmann Distribution (Softmax) over the learned Q values, regulated by a Temperature
parameter. While such approaches lead to more informed exploration that is based on learning
experience, they still fail to address the second issue, namely they are not directed (Thrun, 1992)
towards gaining more knowledge, not biasing actions in the direction of unexplored trajectories.

Another important approach in the study of efficient exploration is based on Sample Complexity
of Exploration as defined in the PAC-MDP literature (Kakade et al., 2003). Relevant to our work
is Delayed Q Learning (Strehl et al., 2006), a model-free algorithm that has theoretical PAC-MDP
guarantees. However, to ensure these theoretical guarantees this algorithm uses a conservative ex-
ploration which might be impractical (see also (Kolter & Ng, 2009) and Appendix B).

1.2 CURRENT DIRECTED EXPLORATION AND ITS LIMITATIONS

In order to achieve directed exploration, the estimation of an exploration value of the different state-
actions (often termed exploration bonus) is needed. The most commonly used exploration bonus is
based on counting (Thrun, 1992) – for each pair (s, a), store a counter C (s, a) that indicates how
many times the agent performed action a at state s so far. Counter-based methods are widely used
both in practice and in theory (Kolter & Ng, 2009; Strehl & Littman, 2008; Guez et al., 2012; Buso-
niu et al., 2008). Other options for evaluating exploration include recency and value difference (or
error) measures (Thrun, 1992; Tokic & Palm, 2011). While all of these exploration measures can be
used for directed exploration, their major limitation in a model-free settings is that the exploratory
value of a state-action pair is evaluated with respect only to its immediate outcome, one step ahead.
It seems desirable to determine the exploratory value of an action not only by how much new im-
mediate knowledge the agent gains from it, but also by how much more new knowledge could be
gained from a trajectory starting with it. The goal of this work is to develop a measure for such
exploratory values of state-action pairs, in a model-free settings.
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2 LEARNING EXPLORATION VALUES

2.1 PROPAGATING EXPLORATION VALUES

The challenge discussed in 1.2 is in fact similar to that of learning the value functions. The value of a
state-action represents not only the immediate reward, but also the temporally discounted sum of ex-
pected rewards over a trajectory starting from this state and action. Similarly, the ”exploration-value”
of a state-action should represent not only the immediate knowledge gained but also the expected
future gained knowledge. This suggests that a similar approach to that used for value-learning might
be appropriate for learning the exploration values as well, using exploration bonus as the immediate
reward. However, because it is reasonable to require exploration bonus to decrease over repetitions
of the same trajectories, a naive implementation would violate the Markovian property.

This challenge has been addressed in a model-based setting: The idea is to use at every step the
current estimate of the parameters of the MDP in order to compute, using dynamic programming, the
future exploration bonus (Little & Sommer, 2014). However, this solution cannot be implemented
in a model-free setting. Therefore, a satisfying approach for propagating directed exploration in
model-free reinforcement learning is still missing. In this section, we propose such an approach.

2.2 E-VALUES

We propose a novel approach for directed exploration, based on two parallel MDPs. One MDP is the
original MDP, which is used to estimate the value function. The second MDP is identical except for
one important difference. We posit that there are no rewards associated with any of the state-actions.
Thus, the true value of all state-action pairs is 0. We will use an RL algorithm to ”learn” the ”action-
values” in this new MDP which we denote as E-values. We will show that these E-values represent
the missing knowledge and thus can be used for propagating directed exploration. This will be
done by initializing E-values to 1. These positive initial conditions will subsequently result in an
optimistic bias that will lead to directed exploration, by giving high estimations only to state-action
pairs from which an optimistic outcome has not yet been excluded by the agent’s experience.

Formally, given an MDP M = (S,A, P,R, γ) we construct a new MDP M ′ = (S,A, P,0, γE)
with 0 denoting the identically zero function, and 0 ≤ γE < 1 is a discount parameter. The agent
now learns both Q and E values concurrently, while initially E (s, a) = 1 for all s, a. Clearly,
E∗ = 0. However intuitively, the value of E (s, a) at a given timestep during training stands
for the knowledge, or uncertainty, that the agent has regarding this state-action pair. Eventually,
after enough exploration, there is no additional knowledge left to discover which corresponds to
E (s, a)→ E∗ (s, a) = 0.

For learning E, we use the SARSA algorithm (Rummery & Niranjan, 1994; Sutton & Barto, 1998)
which differs from Watkin’s Q-Learning by being on-policy, following the update rule:

E (st, at)← (1− αE)E (st, at) + αE (r + γEE (st+1, at+1))

Where αE is the learning rate. For simplicity, we will assume throughout the paper that αE = α.

Note that this learning rule updates the E-values based on E (st+1, at+1) rather than
maxaE (st+1, a), thus not considering potentially highly informative actions which are never se-
lected. This is important for guaranteeing that exploration values will decrease when repeating the
same trajectory (as we will show below). Maintaining these additional updates doesn’t affect the
asymptotic space/time complexity of the learning algorithm, since it is simply performing the same
updates of a standard Q-Learning process twice.

2.3 E-VALUES AS GENERALIZED COUNTERS

The logarithm of E-Values can be thought of as a generalization of visit counters, with propagation
of the values along state-action pairs. To see this, let us examine the case of γE = 0 in which there
is no propagation from future states. In this case, the update rule is given by:

E (s, a)← (1− α)E (s, a) + α (0 + γEE (s′, a′)) = (1− α)E (s, a)

So after being visited n times, the value of the state-action pair is (1− α)n, where α is the learning
rate. By taking a logarithm transformation, we can see that log1−α (E) = n. In addition, when s is
a terminal state with one action, log1−α (E) = n for any value of γE .
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s0s · · ·

s2

s1

sk−1

sk

start

Figure 1: Left: Tree MDP, with k leaves. Tree: log1−αE (s, start) as function of visit cycles, for
different trees of k leaves (color coded). For each k, a cycle consists of visiting all leaves, hence k
visits of the start action. log1−αE behaves as a generalized counter, where each cycle contributes
approximately one generalized visit.

When γE > 0 and for non-terminal states, E will decrease more slowly and therefore log1−αE
will increase more slowly than a counter. The exact rate will depend on the MDP, the policy and
the specific value of γE . Crucially, for state-actions which lead to many potential states, each visit
contributes less to the generalized counter, because more visits are required to exhaust the potential
outcomes of the action. To gain more insight, consider the MDP depicted in Figure 1 left, a tree
with the root as initial state and the leaves as terminal states. If actions are chosen sequentially, one
leaf after the other, we expect that each complete round of choices (which will result with k actual
visits of the (s, start) pair) will be roughly equivalent to one generalized counter. Simulation of this
and other simple MDPs show that E-values behave in accordance with such intuitions (see Figure 1
right).

An important property of E-values is that they decrease over repetitions. Formally, by completing
a trajectory of the form s0, a0, . . . , sn, an, s0, a0 in the MDP, the maximal value of E (si, ai) will
decrease. To see this, assume that E (si, ai) was maximal, and consider its value after the update:

E (si, ai)← (1− α)E (si, ai) + αγEE (si+1, ai+1)

Because γE < 1 andE (si+1, ai+1) ≤ E (si, ai), we get that after the update, the value ofE (si, ai)
decreased. For any non-maximal (sj , aj), its value after the update is a convex combination of its
previous value and γEE (sk, ak) which is not larger than its composing terms, which in turn are
smaller than the maximal E-value.

3 APPLYING E-VALUES

The logarithm of E-values can be considered as a generalization of counters. As such, algorithms
that utilize counters can be generalized to incorporate E-values. Here we consider two such gener-
alizations.

3.1 E-VALUES AS REWARD EXPLORATION BONUS

In model-based RL, counters have been used to create an augmented reward function. Motivated
by this result, augmenting the reward with a counter-based exploration bonus has also been used in
model-free RL (Storck et al., 1995; Bellemare et al., 2016). E-Values can naturally generalize this
approach, by replacing the standard counter with its corresponding generalized counter (log1−αE).

To demonstrate the advantage of usingE-values over standard counters, we tested an ε-greedy agent
with an exploration bonus of 1

log1−α E
added to the observed reward on the bridge MDP (Figure

2). To measure the learning progress and its convergence, we calculated the mean square error

4



Published as a conference paper at ICLR 2018

Figure 2: Bridge
MDP

Figure 3: MSE between Q and Q∗ on optimal policy per episode.
Convergence of ε-greedy on the short bridge environment (k = 5)
with and without exploration bonuses added to the reward. Note the
logarithmic scale of the abscissa.

EP (s,a|π∗)
[
(Q (s, a)−Q∗ (s, a))2

]
, where the average is over the probability of state-action pairs

when following the optimal policy π∗. We varied the value of γE from 0 – resulting effectively in
standard counters – to γE = 0.9. Our results (Figure 3) show that adding the exploration bonus to
the reward leads to faster learning. Moreover, the larger the value of γE in this example the faster
the learning, demonstrating that generalized counters significantly outperforming standard counters.

3.2 E-VALUES AND ACTION-SELECTION RULES

Another way in which counters can be used to assist exploration is by adding them to the estimated
Q-values. In this framework, action-selection is a function not only of the Q-values but also of
the counters. Several such action-selection rules have been proposed (Thrun, 1992; Meuleau &
Bourgine, 1999; Kolter & Ng, 2009). These usually take the form of a deterministic policy that
maximizes some combination of the estimated Q-value with a counter-based exploration bonus. It
is easy to generalize such rules using E-values – simply replace the counters C by the generalized
counters log1−α (E).

3.2.1 DETERMINIZATION OF STOCHASTIC DECISION RULES

Here, we consider a special family of action-selection rules that are derived as deterministic equiv-
alents of standard stochastic rules. Stochastic action-selection rules are commonly used in RL. In
their simple form they include rules such as the ε-greedy or Softmax exploration described above.
In this framework, exploratory behavior is achieved by stochastic action selection, independent of
past choices. At first glance, it might be unclear how E-values can contribute or improve such rules.
We now turn to show that, by using counters, for every stochastic rule there exist equivalent deter-
ministic rules. Once turned to deterministic counter-based rules, it is again possible improve them
using E-values.

The stochastic action-selection rules determine the frequency of choosing the different actions in the
limit of a large number of repetitions, while abstracting away the specific order of choices. This fact
is a key to understanding the relation between deterministic and stochastic rules. An equivalence
of two such rules can only be an in-the-limit equivalence, and can be seen as choosing a specific
realization of sample from the distribution. Therefore, in order to derive a deterministic equivalent
of a given stochastic rule, we only have to make sure that the frequencies of actions selected under
both rules are equal in the limit of infinitely many steps. As the probability for each action is likely
to depend on the current Q-values, we have to consider fixed Q-values to define this equivalence.
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We prove that given a stochastic action-selection rule f (a|s), every deterministic policy that does
not choose an action that was visited too many times until now (with respect to the expected number
according to the probability distribution) is a determinization of f . Formally, lets assume that given
a certainQ function and state s we wish a certain ratio between different choices of actions a ∈ A to
hold. We denote the frequency of this ratio fQ (a|s). For brevity we assume s and Q are constants
and denote fQ (a|s) = f (a). We also assume a counter C (s, a) is kept denoting the number of
choices of a in s. For brevity we denote C (s, a) = C (a) and

∑
a C (s, a) = C. When we look at

the counters after T steps we use subscript CT (a). Following this notation, note that CT = T .

Theorem 3.1. For any sub-linear function b (t) and for any deterministic policy which chooses at
step T an action a such that CT (a)T − f (a) ≤ b (t) it holds that ∀a ∈ A

lim
T→∞

CT (a)

T
= f (a)

Proof. For a full proof of the theorem see Appendix A in the supplementary materials

The result above is not a vacuous truth – we now provide two possible determinization rules that
achieves it. One rule is straightforward from the theorem, using b = 0, choosing argmina

C(a)
C −

f (a). Another rule follows the probability ratio between the stochastic policy and the empirical dis-
tribution: argmaxa

f(a)
C(a) . We denote this determinization LLL, because when generalized counters

are used instead of counters it becomes argmaxa logf (s, a)− loglog1−αE (s, a).

Now we can replace the visit counters C (s, a) with the generalized counters log1−α (E (s, a)) to
create Directed Outreaching Reinforcement Action-Selection – DORA the explorer. By this, we can
transform any stochastic or counter-based action-selection rule into a deterministic rule in which
exploration propagates over the states and the expected trajectories to follow.

Input: Stochastic action-selection rule f , learning rate α, Exploration discount factor γE
initialize Q (s, a) = 0, E (s, a) = 1;
foreach episode do

init s;
while not terminated do

Choose a = argmaxx log fQ (x|s)− log log1−αE (s, x);
Observe transitions (s, a, r, s′, a′);
Q (s, a)← (1− α)Q (s, a) + α (r + γmaxxQ (s′, x));
E (s, a)← (1− α)E (s, a) + αγEE (s′, a′);

end
end

Algorithm 1: DORA algorithm using LLL determinization for stochastic policy f

3.3 RESULTS – FINITE MDPS

To test this algorithm, the first set of experiments were done on Bridge environments of various
lengths k (Figure 2). We considered the following agents: ε-greedy, Softmax and their respective
LLL determinizations (as described in 3.2.1) using both counters and E-values. In addition, we
compared a more standard counter-based agent in the form of a UCB-like algorithm (Auer et al.,

2002) following an action-selection rule with exploration bonus of
√

log t
C . We tested two variants

of this algorithm, using ordinary visit counters and E-values. Each agent’s hyperparameters (ε and
temperature) were fitted separately to optimize learning. For stochastic agents, we averaged the
results over 50 trials for each execution. Unless stated otherwise, γE = 0.9.

We also used a normalized version of the bridge environment, where all rewards are between 0 and
1, to compare DORA with the Delayed Q-Learning algorithm (Strehl et al., 2006).

Our results (Figure 4) demonstrate that E-value based agents outperform both their counter-based
and their stochastic equivalents on the bridge problem. As shown in Figure 4, Stochastic and
counter-based ε-greedy agents, as well as the standard UCB fail to converge. E-value agents are
the first to reach low error values, indicating that they learn faster. Similar results were achieved
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Figure 4: MSE between Q and Q∗ on optimal policy per episode. Convergence measure of all
agents, long bridge environment (k = 15). E-values agents are the first to converge, suggesting
their superior learning abilities.

on other gridworld environments, such as the Cliff problem (Sutton & Barto, 1998) (not shown).
We also achieved competitive results with respect to Delayed Q Learning (see supplementary B and
Figure 7 there).

The success of E-values based learning relative to counter based learning implies that the use of
E-values lead to more efficient exploration. If this is indeed the case, we expect E-values to better
represent the agent’s missing knowledge than visit counters during learning. To test this hypothesis
we studied the behavior of an E-value LLL Softmax on a shorter bridge environment (k = 5). For
a given state-action pair, a measure of the missing knowledge is the normalized distance between its
estimated value (Q) and its optimal-policy value (Q∗). We recorded C, log1−α (E) and

∣∣∣Q−Q∗Q∗

∣∣∣ for
each s, a at the end of each episode. Generally, this measure of missing knowledge is expected to
be a monotonously-decreasing function of the number of visits (C). This is indeed true, as depicted
in Figure 5 (left). However, considering all state-action pairs, visit counters do not capture well the
amount of missing knowledge, as the convergence level depends not only on the counter but also on
the identity of the state-action it counts. By contrast, considering the convergence level as a function
of the generalized counter (Figure 5, right) reveals a strikingly different pattern. Independently
of the state-action identity, the convergence level is a unique function of the generalized counter.
These results demonstrate that generalized counters are a useful measure of the amount of missing
knowledge.

4 E-VALUES WITH FUNCTION APPROXIMATION

So far we discussedE-values in the tabular case, relying on finite (and small) state and action spaces.
However, a main motivation for using model-free approach is that it can be successfully applied in
large MDPs where tabular methods are intractable. In this case (in particular for continuous MDPs),
achieving directed exploration is a non-trivial task. Because revisiting a state or a state-action pair
is unlikely, and because it is intractable to store individual values for all state-action pairs, counter-
based methods cannot be directly applied. In fact, most implementations in these cases adopt simple
exploration strategies such as ε-greedy or softmax (Bellemare et al., 2016).

There are standard model-free techniques to estimate value function in function-approximation sce-
narios. Because learning E-values is simply learning another value-function, the same techniques
can be applied for learning E-values in these scenarios. In this case, the concept of visit-count –
or a generalized visit-count – will depend on the representation of states used by the approximating
function.

To test whetherE-values can serve as generalized visit-counters in the function-approximation case,
we used a linear approximation architecture on the MountainCar problem (Moore, 1990) (Appendix
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C). To dissociate Q and E-values, actions were chosen by an ε-greedy agent independently of E-
values. As shown in Appendix C, E-values are an effective way for counting both visits and gen-
eralized visits in continuous MDPs. For completeness, we also compared the performance of LLL
agents to stochastic agents on a sparse-reward MountainCar problem, and found that LLL agents
learns substantially faster than the stochastic agents (Appendix D).

4.1 RESULTS – FUNCTION APPROXIMATION

To show our approach scales to complex problems, we used the Freeway Atari 2600 game, which is
known as a hard exploration problem (Bellemare et al., 2016). We trained a neural network with two
streams to predict the Q and E-values. First, we trained the network using standard DQN technique
(Mnih et al., 2015), which ignores the E-values. Second, we trained the network while adding an
exploration bonus of β√− logE

to the reward (In all reported simulations, β = 0.05). In both cases,
action-selection was performed by an ε-greedy rule, as in Bellemare et al. (2016).

Note that the exploration bonus requires 0 < E < 1. To satisfy this requirement, we applied a
logistic activation fucntion on the output of the last layer of the E-value stream, and initialized the
weights of this layer to 0. As a result, the E-values were initialized at 0.5 and satisfied 0 < E < 1
throughout the training. In comparison, no non-linearity was applied in the last layer of the Q-value
stream and the weights were randmoly initialized.

We compared our approach to a DQN baseline, as well as to the density model counters suggested
by (Bellemare et al., 2016). The baseline used here does not utilize additional enhancements (such
as Double DQN and Monte-Carlo return) which were used in (Bellemare et al., 2016). Our results,
depicted in Figure 6, demonstrate that the use of E-values outperform both DQN and density model
counters baselines. In addition, our approach results in better performance than in (Bellemare et al.,
2016) (with the mentioned enhancements), converging in approximately 2 · 106 steps, instead of
10 · 106 steps2.

5 RELATED WORK

The idea of using reinforcement-learning techniques to estimate exploration can be traced back to
Storck et al. (1995) and Meuleau & Bourgine (1999) who also analyzed propagation of uncertain-
ties and exploration values. These works followed a model-based approach, and did not fully deal
with the problem of non-Markovity arising from using exploration bonus as the immediate reward.
A related approach was used by Little & Sommer (2014), where exploration was investigated by
information-theoretic measures. Such interpretation of exploration can also be found in other works
(Schmidhuber (1991); Sun et al. (2011); Houthooft et al. (2016)).

Efficient exploration in model-free RL was also analyzed in PAC-MDP framework, most notably
the Delayed Q Learning algorithm by Strehl et al. (2006). For further discussion and comparison of
our approach with Delayed Q Learning, see 1.1 and Appendix B.

In terms of generalizing Counter-based methods, there has been some works on using counter-like
notions for exploration in continuous MDPs (Nouri & Littman, 2009). A more direct attempt was
recently proposed by Bellemare et al. (2016). This generalization provides a way to implement visit
counters in large, continuous state and action spaces by using density models. Our generalization is
different, as it aims first on generalizing the notion of visit counts themselves, from actual counters to
”propagating counters”. In addition, our approach does not depend on any estimated model – which
might be an advantage in domains for which good density models are not available. Nevertheless,
we believe that an interesting future work will be comparing between the approach suggested by
Bellemare et al. (2016) and our approach, in particular for the case of γE = 0.

2We used an existing implementation for DQN and density-model counters available at
https://github.com/brendanator/atari-rl. Training with density-model counters was an order of magnitude
slower than training with two-streamed network for E-values
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Figure 5: Convergence of Q to Q∗ for individual state-action pairs (each denoted by a different
color), with respect to counters (left) and generalized counters (right). Results obtained from E-
Value LLL Softmax on the short bridge environment (k = 5). Triangle markers indicate pairs with
”east” actions, which constitute the optimal policy of crossing the bridge. Circle markers indicate
state-action pairs that are not part of the optimal policy. Generalized counters are a useful measure
of the amount of missing knowledge.

Figure 6: Results on Freeway game. All agents used ε-greedy action-selection rule without explo-
ration bonus (DQN, blue), with a bonus term based on density model counters (Density, orange)
added to the reward, or with bonus term based on E-values (black).
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A PROOF OF THE DETERMINIZATION THEOREM

The proof for the determinization mentioned in the paper is achieved based on the following lem-
mata.
Lemma A.1. The absolute sum of positive and negative differences between the empiric distribution
(deterministic frequency) and goal distribution (non-deterministic frequency) is equal.∑

a:f(a)≥C(a)
C

f (a)− C (a)

C
= −

∑
a:f(a)<

C(a)
C

f (a)− C (a)

C

Proof. Straightforward from the observation that∑
a

f (a) =
∑
a

C (a)

C
= 1

Lemma A.2. For any t

max
a

{
Ct (a)

t
− f (a)

}
≤ 1 + b (t)

t

Proof. The proof of A.2 is done by induction. For t = 1

∀a ∈ A :
Ct (a)

t
− f (a) = max

a

{
Ct (a)

t
− f (a)

}
Hence we look at a ∈ A.

Ct (a)

t
− f (a) ≤ Ct (a)

t

≤ 1 + b (1)

1

assume the claim is true for t = T then for t = T +1 There exists a such that CT (a) /T − f (a) ≤
b (t) which the algorithm chooses for this a. For it

CT+1 (a)

T + 1
− f (a) =

CT (a) + 1

T + 1
− f (a)

=
CT (a)

T + 1
− f (a) +

1

T + 1

=
CT (a)− (T + 1) f (a)

T + 1
+

1

T + 1

≤ 1 + b (t)

T + 1

It also holds that ∀a′ ∈ A s.t. a′ 6= a

CT+1 (a)

T + 1
− f (a) =

CT (a)

T + 1
− f (a)

=
CT (a)− (T + 1) f (a)

T + 1

<
CT (a)− Tf (a)

T + 1

≤ 1 + b (t)

T + 1

Proof of 3.1. It holds from A.2 together with A.1 that in the step t in the worst case all but one of
the actions have Ct(a)

t − f(a) = 1
t and the last action has f(a)− Ct(a)

t = − |A|−1t . So by the bound
on sum of positives and negatives we get:

lim
T→∞

CT (a)

T
= f(a)
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Figure 7: Normalized MSE between Q and Q∗ on optimal policy per episode. Convergence of
E-value LLL and Delayed Q-Learning on, normalized bridge environment (k = 15). MSE was
noramlized for each agent to enable comparison.

B COMPARISON WITH DELAYED Q-LEARNING

Because Delayed Q learning initializes its values optimistically, which result in a high MSE, we
normalized the MSE of the two agents (separately) to enable comparison. Notably, to achieve this
performance by the DelayedQ Learning, we had to manually choose a low value form (in Figure 7,
m = 10), the hyperparameter regulating the number of visits required before any update. This is an
order of magnitude smaller than the theoretical value required for even moderate PAC-requirements
in the usual notion of ε, δ, such m also implies learning in orders of magnitudes slower. In fact,
for this limit of m → 1 the algorithm is effectively quite similar to a ”Vanilla” Q-Learning with
an optimistic initialization, which is possible due to the assumption made by the algorithm that all
rewards are between 0 and 1. In fact, several exploration schemes relying on optimism in the face
of uncertainty were proposed (Walsh et al., 2009). However, because our approach separate reward
values and exploratory values, we are able to use optimism for the latter without assuming any prior
knowledge about the first – while still achieving competitive results to an optimistic initialization
based on prior knowledge.

C EVALUATING E-VALUES DYNAMICS IN FUNCTION-APPROXIMATION

To gain insight into the relation between E-values and number of visits, we used the linear-
approximation architecture on the MountainCar problem. Note that when using E-values, they are
generally correlated with visit counts both because visits result in update of the E-values through
learning and because E-values affect visits through the exploration bonus (or action-selection rule).
To dissociate the two,Q-values andE-values were learned in parallel in these simulation, but action-
selection was independent of the E-values. Rather, actions were chosen by an ε-greedy agent. To
estimate visit-counts, we recorded the entire set of visited states, and computed the empirical visits
histogram by binning the two-dimensional state-space. For each state, its visit counter estimator
C̃ (s) is the value of the matching bin in the histogram for this state. In addition, we recorded the
learned model (weights vector for E-values) and computed the E-values map by sampling a state
for each bin, and calculating its E-values using the model. For simplicity, we consider here the
resolution of states alone, summing over all 3 actions for each state. That is, we compare C̃ (s)
to
∑
a log1−αE (s, a) = CE (s). Figure 8 depicts the empirical visits histogram (left) and the es-

timated E-values for the case of γE = 0 after the complete training. The results of the analysis
show that, roughly speaking, those regions in the state space that were more often visited, were also
associated with a higher CE (s).
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Figure 8: Empirical visits histogram (left) and learned CE (right) after training, γE = 0.

To better understand these results, we considered smaller time-windows in the learning process.
Specifically, Figure 9 depicts the empirical visit histogram (left), and the corresponding CE (s)
(right) in the first 10 episodes, in which visits were more centrally distributed. Figure 10 depicts
the change in the empirical visit histogram (left), and change in the corresponding CE (s) (right) in
the last 10 episodes of the training, in which visits were distributed along a spiral (forming an near-
optimal behavior). These results demonstrate high similarity between visit-counts and the E-value
representation of them, indicating that E-values are good proxies of visit counters.

Figure 9: Empirical visits histogram (left) and learned CE (right) in the first 10 training episodes,
γE = 0.
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Figure 10: Difference in empirical visits histogram (left) and learned CE (right) in the last 10 train-
ing episodes, γE = 0.

The results depicted in Figures 9 and 10 were achieved with γE = 0. For γE > 0, we expect the
generalized counters (represented byE-values) to account not for standard visits but for ”generalized
visits”, weighting the trajectories starting in each state. We repeated the analysis of Figure 10 for
the case of γE = 0.99. Results, depicted in Figure 11, shows that indeed for terminal or near-
terminal states (where position> 0.5) generalized visits, measured by difference in their generalized
counters, are higher – comparing to far-from terminal states – than the empirical visits of these states
(comparing to far-from terminal states).

Figure 11: Difference in empirical visits histogram (left) and learned CE (right) in the last 10 train-
ing episodes, γE = 0.99. Note that the results are based on a different simulation than those in
Figure 10.

To quantify the relation between visits and E-values, we densely sampled the (achievable) state-
space to generate many examples of states. For each sampled state, we computed the correlation
coefficient between CE (s) and C̃ (s) throughout the learning process (snapshots taken each 10
episodes). The values C̃ (s) were estimated by the empirical visits histogram (value of the bin
corresponding to the sampled state) calculated based on visits history up to each snapshot. Figure
12, depicting the histogram of correlation coefficients between the two measures, demonstrating
strong positive correlations between empirical visit-counters and generalized counters represented
by E-values. These results indicate that E-values are an effective way for counting effective visits
in continuous MDPs. Note that the number of model parameters used to estimate E (s, a) in this
case is much smaller than the size of the table we would have to use in order to track state-action
counters in such binning resolution.
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Figure 12: Histogram of correlation coefficients between empirical visit counters andCE throughout
training, per state (γE = 0).

D RESULTS ON CONTINUOUS MDPS – MOUNTAINCAR

To test the performance of E-values based agents, simulations were performed using the Mountain-
Car environment. The version of the problem considered here is with sparse and delayed reward,
meaning that there is a constant reward of 0 unless reaching a goal state which provides a reward
of magnitude 1. Episode length was limited to 1000 steps. We used linear approximation with tile-
coding features (Sutton & Barto, 1998), learning the weights vectors for Q and E in parallel. To
guarantee that E-values are uniformly initialized and are kept between 0 and 1 throughout learning,
we initialized the weights vector for E-values to 0 and added a logistic non-linearity to the results
of the standard linear approximation. In contrast, the Q-values weights vector was initialized at
random, and there was no non-linearity. We compared the performance of several agents. The first
two used only Q-values, with a softmax or an ε-greedy action-selection rules. The other two agents
are the DORA variants using both Q and E values, following the LLL determinization for softmax
either with γE = 0 or with γE = 0.99. Parameters for each agent (temperature and ε) were fit-
ted separately to maximize performance. The results depicted in Figure 13 demonstrate that using
E-values with γE > 0 lead to better performance in the MountainCar problem

In addition we tested our approach using (relatively simple) neural networks. We trained two neural
networks in parallel (unlike the two-streams single network used for Atari simulations), for pre-
dicting Q and E values. In this architecture, the same technique of 0 initializing and a logistic
non-linearity was applied to the last linear of the E-network. Similarly to the linear approximation
approach, E-values based agents outperform their ε-greedy and softmax counterparts (not shown).
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Figure 13: Probability of reaching goal on MountainCar (computed by averaging over 50 simula-
tions of each agent), as a function of training episodes. While Softmax exploration fails to solve the
problem within 1000 episodes, LLL E-values agents with generalized counters (γE > 0) quickly
reach high success rates.
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Abstract

Efficient exploration is crucial for the perfor-
mance of agents in complex environments.
Exploration has been traditionally studied in
the framework of Reinforcement Learning, in
which the objective is maximizing a reward
function. Here, we consider the question of
optimal exploration independently of a reward-
maximizing goal. We define the exploratory
fitness of a policy as the entropy of its in-
duced discounted visitation distribution. We
start with the planning scenario, showing how
an optimal exploration policy can be found ef-
ficiently when the transition model is known,
and study its properties. Then, we discuss
learning, showing how the principles of this
optimal exploration can be applied when the
transition model is unknown, for both model-
based and model-free learning.

1 Introduction

Exploration is typically considered in the framework of
Reinforcement Learning (RL) as a way of finding the
policy that maximize the expected long-term (possibly
discounted) reward. In this framework, all policies are
equally good in the absence of rewards. However intu-
itively, even in the absence of any rewards some poli-
cies are more “effective” – from an exploratory point of
view – than others. The goal of this work is to present
a framework that formalizes this intuition by defining
an optimality criterion for exploration, and to study the
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Department of Cognitive Sciences, The Alexander Silberman
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properties of the resulting optimal exploration policies.
We posit that an optimal exploratory policy is one which
efficiently covers as much of the environment as possi-
ble. In what follows, we mathematically define both “ef-
ficiently” and “covers”.

Most previous works attempting at similar goals sug-
gested some form of “intrinsic motivation” (Storck et al.,
1995; Chentanez et al., 2005; Oudeyer and Kaplan, 2009)
which could serve as an internal reward signal for the
agent. Such internal rewards could be based on visit
counters (Bellemare et al., 2016; Tang et al., 2017; Os-
trovski et al., 2017; Fox et al., 2018), prediction errors
(Pathak et al., 2017; Burda et al., 2019), information
gain (Little and Sommer, 2014; Still and Precup, 2012;
Houthooft et al., 2016), and other related ideas to mea-
sure exploratory usefulness of states (Thrun, 1992). We
could characterize most of these as using some measure
of the agent’s own learning (e.g. visits of novel states, or
changes in the estimated parameters of the environment’s
model) as a reinforcement signal (Schmidhuber, 1991).
By contrast, the quality of exploration in our framework
is an intrinsic property of the policy, which is indepen-
dent of the “internal state” (or the particular history) of
the agent.

In §2 we define the settings and the objective function
for optimal exploration, and show how the optimization
problem of finding such optimal exploration policy can
be solved efficiently when the model of the environment
is known. In §3 we demonstrate this approach using
several challenging environments and study the result-
ing policies. In §4 we discuss the case when the model
is unknown, and the exploration policy has to be learned
from observations – in both model-based and model-free
frameworks. We conclude with a more detailed review
of related work, and a further discussion.



2 Optimality criterion for exploration:
Maximum-Entropy approach

2.1 Settings and the objective function

We consider the settings of a Markov-Decision-Process
(MDP) M =

(
S,A, P, r, ρ0S

)
, where S is the set of

states, A is the set of actions, P (s′|s, a) is the transi-
tion model, r (s, a) is the reward function (which will
not play any role in this work), and ρ0S (s) is a distribu-
tion over initial states. For clarity, we assume that the
number of actions available at each state is equal, but our
approach and results can be easily generalized when this
is not the case.

Any stationary policy π – a (stochastic) mapping from
states to actions – induces a distribution over trajectories
τ = (s0, a0, s1, a1, . . .), which factorizes according to
the Markov property:

Pπ [τ ] = ρ0S (s0)π (a0|s0)
∏
t>0

P (st|st−1at−1)π (at|st)

(1)

Central to our work is the notion of the discounted vis-
itation distribution induced by a policy π. This distri-
bution, over state-action pairs, measures the occupancies
of each such pair when trajectories are generated by the
policy π (i.e, sampled according to Equation (1)), with
future visits contributing less due to the exponential tem-
poral discounting with factor 0 < γ < 1. We denote this
distribution, for a policy π and a discount factor γ, as ρπγ :

ρπγ (s, a) = (1− γ)
∞∑
t=0

γt
∑

τ :st=s,at=a

Pπ [τ ]

where the (1− γ) pre-factor is required for proper nor-
malization, such that

∑
s,a ρ

π
γ (s, a) = 1. Explicitly

marginalizing time, this could be written as:

ρπγ (s, a) = (1− γ)
∞∑
t=0

γtP(t)
π [s, a] (2)

where P(t)
π [s, a] is the probability of visiting (s, a) at

time t.

We postulate that an optimal-exploration policy is one
that maximizes the entropy of the induced discounted
visitation distribution over the state-action pairs. In other
words, a policy that results in visits of all state-action
pairs as uniformly as possible, and as early as possible.
This poses the following optimization problem:

π∗ ≡ argmax
π

H
[
ρπγ
]

(3)

where H [·] is the standard information-theoretic entropy
of a distribution.

2.2 Basic properties of ρπγ

For a stationary policy π, it is clear from equation (1) that
the sequence of visited state-action pairs forms a Markov
Chain, with the transition matrix Wπ: Wπ

sa,s′a′ =
P (s|s′, a′)π (a|s) (where we index entries by state-
action pairs). Furthermore, the initial distribution over
state-action pairs, which we define as ρ0, is: ρ0 (s, a) =
ρ0S (s)π (a|s). Note that ρ0 (s, a) = P(0)

π [s, a].

Lemma 1. ρπγ is the unique solution to equation ρ =
(1− γ)ρ0 + γWπρ. That is:

ρπγ = (1− γ) (I− γWπ)
−1

ρ0 (4)

Lemma 2. Let ρπγ be the discounted visitation distribu-
tion induced by the policy π. Then for any state s with
non-zero (marginal) probability under ρπγ : π (a|s) =

ρπγ (s,a)∑
a′ ρ

π
γ (s,a

′)

The proofs are standard and can be found in the literature
(e.g (Wang et al., 2007; Puterman, 1990)). For complete-
ness, we include proofs using our notation in the supple-
mentary material.

2.3 Finding an optimal exploration policy

Solving the optimization problem of Equation (3) di-
rectly is challenging, because the induced discounted
visitation distribution ρπγ is a complicated, non-linear
function of the policy π (Equation (4)). We therefore
present an alternative approach, inspired by dual meth-
ods in classical RL (Wang et al., 2007).

The key observation is that instead of maximizing over
policies, it is possible instead to optimize directly over
state-action probability distributions, under appropriate
constraints (which we define below). Again, this is anal-
ogous to solving standard RL problem by optimizing
such probabilities rather than the value function or the
policy. Clearly, an arbitrary probability distribution ρ
over state-action pairs is not necessarily realizable as the
discounted visitation distribution of any policy π. If,
however, ρ satisfies the “self-consistency” condition(s)
in the form appearing in Lemma 1, then it is guaranteed
that a corresponding π exist such that ρ = ρπγ . Moreover
such π is easily constructed from ρ itself (in the same
way as in Lemma 2).

Note that π explicitly appears in Lemma 1. Therefore,
to complete the argument, the constraints on ρ must be
re-written so as to omit the explicit dependencies on π,
which are due to Wπ and ρ0 being functions of π. The
following theorem establishes this, and form the basis for
our main algorithm (Algorithm 1). This reduces the opti-
mization problem in 3 to a standard, convex optimization



Algorithm 1 Maximum-Entropy optimal exploration

Input MDPM =
(
S,A, P, r, ρ0S

)
, discount factor γ

Solve the following optimization problem to get ρ∗:

max
ρ

−
∑
s,a

ρ (s, a) log ρ (s, a)

s.t ρ (s, a) ≥ 0,
∑
s,a

ρ (s, a) = 1,

∑
a′

ρ (s, a′) = (1− γ) ρ0S (s)

+ γ
∑
s′,a′

ρ (s′, a′)P [s|s′, a′]

Output exploration policy π∗ (a|s) = ρ∗(s,a)∑
a′ ρ
∗(s,a′)

problem – finding a maximum-entropy distribution under
linear constraints.

Theorem 3. Assume ρ (s, a) is a distribution over state-
action pairs, such that for every state s, the following
condition holds:∑
a′

ρ (s, a′) = (1− γ) ρ0S (s)+γ
∑
s′,a′

ρ (s′, a′)P (s|s′, a′)

(5)
Let π (a|s) = ρ(s,a)∑′

a ρ(s,a
′)

. Then, ρ = ρπγ .

The proof is provided in the supplementary material.

3 Properties of optimal exploration

To study the properties of the proposed optimal explo-
ration, we apply it in several environments. We show
that the resultant policies are able to implicitly overcome
key challenges for effective exploration, such as balanc-
ing short-term and long-term outcomes, and achieving
“determined” exploration which is temporally extended.

3.1 Temporally extended exploration

We consider a variant of the well-known N -chain MDP
(Strens, 2000), depicted in Figure 1(a). The environment
consists of N states s1, . . . , sN . At each state, the agent
can either “Step”, advancing to the next state, or “Exit”,
returning to the initial state s1. In sN , both actions lead
back to s1.

In this environment, a uniform policy explores very
poorly, because its probability of reaching a state de-
creases exponentially fast with the number of “Steps”
required to reach it. Indeed, as shown in Figure 1(b),
the optimal exploration policy (Algorithm 1) is biased

towards ’Step’, allowing the agent to explore more uni-
formly the different state-actions. The tendency to take
the “Step” action depends on the specific location in the
chain, k in an inverted U-shape manner. For small k
states, the probability to “Step” increases with k because
the larger k, the more sparsely visited are the subse-
quent states. Near the end of the chain, the probability
of “Step” decreases because there are not so many states
left to explore ahead.

To quantify the effectiveness of the optimal exploration
policy, Figure 1(c) depicts the entropy of the discounted
visitation distributions of several policies, as a function
of the environment size N . The entropy of ρπγ is almost
independent of the size of the chain for uniform explo-
ration (purple) indicating that this policy fails to explore
in but the smallest environments. By contrast, for opti-
mal exploration (red), the entropy of ρπγ increases with
the size of the chain, indicating that optimal exploration
can well-cover much larger environments. For compari-
son, the simple always “step” heuristic (gray) does sub-
stantially better than a uniform policy, but is still sub-
optimal. This is because we require maximal entropy of
a distribution over state-actions, and not only states.

3.2 Diverse exploration

In general, the optimal exploration policy is stochastic,
yielding a distribution of trajectories. To see that, con-
sider the gridworld MDP depicted in Figure 2. The envi-
ronment is a large gridworld, consisting of four rooms
separated by walls, with only 1-tile sized “doorways”
connecting different rooms. Reaching the lower-left cor-
ner from the top-left corner requires the agent to pass
through 3 specific state-action pairs (namely, go through
the aforementioned “doorways”), which are unlikely to
be reached in random exploration. Indeed, the dis-
counted visitation distribution of a uniform exploration
policy (Figure 2(a)) decays exponentially fast with the
geodesic distance (i.e. the distance of the shortest trajec-
tory) from the initial state, and trajectories rarely get out
of the first room, exhibiting dithering behavior around
the initial state (Figure 2(b)). This exemplifies, again,
the inefficiency of random exploration in MDPs in which
a large number of specific actions is needed in order to
reach some of the states. By contrast, our maximum-
entropy approach finds a policy that achieves temporally
extended exploration (Figures 2(c) and 2(d)). This is
despite the fact that the policy is purely reactive and
memoryless, and does not rely explicitly on any form
of temporal-abstractions such as options (Sutton et al.,
1999).

Comparing Figures 2(a) and 2(c), it is worthwhile not-
ing that while in 2(a) the distribution decreases mono-
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Figure 1: Results on N -chain MDP. (a) Illustration of the environment. The agent start at s1, and at each state can
choose between “step” and “exit”. (b) The optimal exploration policies (probability of choosing “step” at each state)
for different values of γ (N = 30, γ = 0.999). (c) The entropy of ρπγ (γ = 0.999) for a uniform policy (πU ), a policy
that always chooses “step” (πS), and the optimal exploration policy (π∗) in different environment sizes.

tonically with the (geodesic) distance from the initial
state, the discounted visitation distribution of the optimal
exploration policy (Figure 2(c)) has significant modes
around the doorways. These modes result in a visita-
tion distribution that locally, is less uniform than that of
a random policy but allows for a more uniform global
visitation by identifying the bottlenecks in the environ-
ment.

Importantly, while being sampled from the same station-
ary policy, different optimal policy trajectories exhibit
diverse paths, typically visiting all four rooms (Figure
2(d)). This allows the policy to explore – on average –
nearby locations (e.g, the first room) while also quickly
reach remote states (e.g, the fourth room).

3.3 Discounted exploration

The parameter γ controls the effective length of the ex-
ploratory trajectories. In the limit of γ = 0, the dis-
counted visitation distribution is reduced to the initial
distribution (over state-actions), that is ρπγ = ρ0. In this
case, an optimal solution is achieved by setting the pol-
icy to be uniform in each state which has non-zero ini-
tial probability (under ρ0S). This exploratory policy does
not take into consideration the long-term consequences
of exploration beyond the immediate action. In the limit
of γ = 1 ρπγ reduces to the stationary distribution of
the Markov-chain induced by π, when this distribution
exists. In particular, the stationary distribution is inde-
pendent of the initial distribution ρ0. Since there is no
discounting, later visits of state-action pairs contribute
just as much as early visits. When 0 < γ < 1, the dis-
counting sets an effective length for trajectories, beyond
which contribution to the discounted visitation distribu-
tion is negligible. In this case, an optimal exploration

policy has to “well cover” the state-action space – on av-
erage – with finite-length trajectories.

In some reinforcement-learning settings, the agent
chooses between small rewards available immediately
and larger rewards in the long-term. In such a case the
optimal policy depends on the discount factor, which
determines the trade-off between short- and long-term
goals. Similarly, the optimal exploration policy will
depend on the discount factor if there is a conflict be-
tween short-term and long-term exploratory goals. The
results depicted in Figure 3 demonstrates that even in a
relatively-simple MDP, the dependence of the optimal
exploration policy on the discount factor is non-trivial.
The agent in this environment has 4 possible actions.
Specifically, from the initial state (red square) it can go
left to explore the smaller but closer room, or go right
to explore the bigger, but farther away room. In this
case, the optimal exploration policy at the initial state
(i.e, the preference for going right or left) depends in a
non-monotonic way on γ, as depicted in Figure 3 (right).
When γ = 0, all four actions have the same exploratory
value because only the immediate exploration (initial
visit) is considered. As γ increases, going left becomes
favorable since it leads to many potential states (the small
room to the left). As γ further increases, the contribu-
tion from reaching the bigger room (farther to the right)
becomes significant, and the preference is switched to-
wards going right. In the limit when γ reaches 1, all
four actions are again equally preferable. This is because
in such a domain, a random-walk policy will result in
a uniform stationary distribution, due to the underlying
diffusion-like dynamics.
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Figure 2: Gridworld MDP consists of four large rooms (25 × 25 tiles each), separated by walls and connected only
through 1-tile sized “doorways”. The initial state is the upper-left corner. We use γ = 0.99. All sampled trajectories
are of length T = 500. Left: log-probability map of the discounted visitation distribution (actions marginalized
out) (a) and randomly chosen examples of sampled trajectories (b) for a uniform policy, choosing actions with equal
probability. Right: log-probability map of the discounted visitation distribution (actions marginalized out) (c) and
randomly chosen examples of sampled trajectories (d) for the optimal exploration policy. Note the difference in color
scales between (a) and (c).

Figure 3: Up: Gridworld MDP. Red tile denotes the
initial state s0, and gray tiles are walls. The agent could
move left to explore a relatively small room (6× 3 tiles)
that is nearby (one tile away), or move right to explore
a bigger room (20 × 11 tiles) which is further away (22
tiles). Down: The optimal exploration policy for actions
Right (blue), Left (orange) at s0, as a function of γ. The
probabilities for actions Up, Down (not shown) are equal
to each other throughout. Dashed horizontal line denotes
probability 0.25, where all actions are chosen uniformly.

4 Learning with optimal exploration

Optimal exploration when the parameters MDP are fully
known is an interesting theoretical question. It is com-
parable to the planning problem of finding optimal pol-
icy (in the sense of maximizing reward) when the MDP
is fully known. However typically, the goal of explo-
ration is to learn the MDP or a good policy. Therefore,
we now turn to discuss how optimal exploration policy
can be learned when the parameters of the MDP are not
known. We consider two approaches to this problem:
one is model-based, in which the parameters of the MDP
are learned concurrently with the learning of the optimal
exploration policy. In the other, the exploration policy is
learned directly from experience.

4.1 Model-Based learning of exploration

As shown in §2, the optimal exploration policy can be
efficiently computed if the parameters of the MDP are
known. Complementary to that, a good exploratory pol-
icy facilitates the learning of these parameters. We pro-
pose to learn the MDP parameters and the optimal explo-
ration policy iteratively. At each “epoch”, the agent com-
putes the optimal exploration policy (using Algorithm 1)
according to its current estimated model of the environ-
ment (which can also be the prior in the beginning of
learning). The resultant policy is then executed in the
environment to collect more samples, and the agent im-
prove its model estimation.

The effectiveness of this procedure is exemplified in Fig-
ure 4(a) for the chain MDP (presented in Figure 1(a)).
Initially, the policy is uniform. Within 30 episodes (80
steps per episode) the policy converges to the optimal
exploration policy. We quantified the model learning us-



ing Missing-Information – the sum of KL-divergences∑
s,aDKL

[
P (·|s, a) ‖ P̂ [·|s, a]

]
where P̂ is the esti-

mated model (Little and Sommer, 2014). Trivially, our
procedure (blue) converges much faster than a random
explorer (orange) which fails for this environment. Re-
markably, learning was also faster than that of a similar
iterative approach, in which the exploration policy was
defined in terms of maximizing the (long-term) predic-
tive information gain (VI-PIG, green; (Little and Som-
mer, 2014)).

4.2 Optimal exploration by Policy Gradient

Next, we consider a model-free scenario in which an
agent learns a policy directly, without explicitly estimat-
ing the transition model. We rely on policy gradient
methods to learn an approximated optimal exploration
policy, by optimizing an objective function that we de-
fine below.

Let τ = (s0, a0, . . . , sT , aT ) be a trajectory. We
define the discounted visit counters as C̃ (s, a) =∑T
t=0 γ

t
1[st=s,at=a]. Note that for T → ∞, we

have (1− γ)E
[
C̃ (s, a)

]
= ρπγ (s, a). Based on these,

we define the empirical visitation distribution, and use
its entropy to define the return of a trajectory. For-
mally: Rent (τ) = −

∑
s,a p̃sa log p̃sa, where p̃sa =

C̃(s,a)∑
s′a′ C̃(s′,a′)

(See Algorithm 2).

Note that the defined objective (“reward”) is a function
of an entire trajectory, and cannot be decomposed to sum
of Markovian rewards. Nevertheless, Policy Gradient
methods can still be used to optimize such reward func-
tions (see also (Shalev-Shwartz et al., 2016)). Learning is
used to optimize E [Rent (τ)]. Due to Jensen’s inequality,
E [Rent (τ)] ≤ H

[
ρπγ
]

(Paninski, 2003), so by optimiz-
ing the expected return E [Rent (τ)] we optimize a lower-
bound on the original objective – the entropy of the dis-
counted visitation distribution. Note that this bound can
be tightened if we calculate p̃sa based on averaging sev-
eral trajectories.

We demonstrate this approach in the chain MDP, track-
ing Rent and H

[
ρπγ
]

throughout the learning process (of
π). Note that neither the true distribution ρπγ nor its en-
tropy are known to the agent. Nevertheless, as depicted
in Figure 4(b), learning indeed optimizesRent andRent is
a lower bound of H

[
ρπγ
]
. Therefore, learning improves

the desired objective of H
[
ρπγ
]
, in this example leading

to a policy whose entropy is indistinguishable from that
of the optimal exploration policy.

Algorithm 2 Policy Gradient for learning exploration
init policy parameters θ, Learning rate η, discount fac-
tor γ
repeat

Rollout π in the environment to sample trajectory τ

Define C̃ (s, a) =
∑T
t=0 γ

t
1[st=s,at=a], p̃sa =

C̃(s,a)∑
s′a′ C̃(s′,a′)

, Rent (τ) = −
∑
s,a p̃sa log p̃sa.

Update parameters: θ ← θ +
η (Rent (τ)− b)

∑
t∇ log π (at|st) {b is an

optional baseline}
until converged

4.3 Function approximation

For MDPs with continuous (or very large) state-space,
one may try to apply Algorithm 2 by using density mod-
els (e.g (Bellemare et al., 2016; Fox et al., 2018; Tang
et al., 2017; Ostrovski et al., 2017)) to approximate the
(empirical) visitation distribution. However, there are
several challenges. First, this approach relies on the
existence of such counters or models. Second, it can
be challenging to estimate p̃sa because the denomina-
tor (

∑
s′a′ C̃ (s′, a′)) requires the integration over the en-

tire state-action space, which can be intractable in many
problems. Therefore, we considered an alternative sim-
pler approach. The main idea is to apply algorithm 2
in feature space, rather than in the actual state-space.
These features do not have to form a counting or a den-
sity model, and could be (but do not have to be) the set
of features used by the policy.

We demonstrate this approach using the MountainCar
MDP (Moore, 1990). The state-space (position and
velocity) is featurized using random Fourier features
(Rahimi and Recht, 2008; 2009). The learned policy is
log-linear in these predefined features (see Supplemen-
tary Material). Our objective is to find the policy that
maximizes the entropy of the discounted “visitation” dis-
tribution in feature space. We approximated this entropy
by binarizing the features and computing the empirical
discounted distribution (probability of being “on”) of ev-
ery feature. The return (Rent) was then defined as the
mean of binary entropies across all features. This is a
rather crude approximation, ignoring both the analog na-
ture of the features and the correlations between them.
Nevertheless, as depicted in Figure 5, we find that in
practice, this approach is very effective, yielding useful
exploratory behavior in this problem. To test the gener-
ality of this approach, we also applied it to the Acrobot
MDP (Sutton, 1996), using the same features and entropy
approximation. As shown in the Figure 6, our approach
yields effective and useful exploratory behavior in this



(a) (b)

Figure 4: Model-based and model-free learning in the chain-MDP introduced in Figure 1(a) (N = 30, γ = 0.999,
Episode length limited to 80 steps). (a) Model-based learning. All agents stated from a uniform prior. For the non-
random agents, the exploration policy was updated each 5 episode. (b) Model-free learning with policy-gradient. The
agent starts with a random policy and is trained to optimize Rent (see main text and Algorithm 2). This optimizes a
lower-bound on the entropy of ρπγ (which is unavailable to the agent). The policy-gradient algorithm used is vanilla
REINFORCE (Williams, 1992) with baseline subtraction (average of Rent over last 20 episodes). Average results over
60 simulations, shaded region and error bars denote standard deviations ((a) and (b)).

problem as well. In fact we find that the learned poli-
cies readily reach the goal state using pure exploration,
despite the fact that this was not an explicit goal in the
learning process, and the agents never observe the “ex-
ternal” reward of the environment (Figure 7). Together,
these results demonstrate the potential of this approach
for exploration in environments with sparse or delayed
rewards, in which complex behavior(s) has to be learned
before any external reward is observed.

5 Discussion and related work

We presented a novel approach for defining optimal ex-
ploration in the absence of reward signals. In our frame-
work, the goal is to maximize the entropy of the dis-
counted visitation distribution induced by the policy.
We showed how the resultant optimal policies overcome
key challenges of exploration in MDPs, namely achiev-
ing temporally extended exploration and balancing long-
term and short-term exploratory outcomes. We pre-
sented an efficient algorithm for finding optimal explo-
ration policy when the transition model of the MDP is
known, as well as an approximating model-free algo-
rithm that maximizes a lower-bound on the aforemen-
tioned entropy.

The discounted visitation distribution rises naturally in
standard RL settings, where it can be used to compute
the value-function of a given policy (Puterman, 1990).
The reason for its centrality is the fact that this distribu-
tion encodes the statistics of all future (including tem-

poral discounting) states visited by starting at a given
initial condition. This fact underlies the motivation of
using these multiple distributions – one for each “initial”
state-action pair – as a useful representation of the state-
action itself, a concept known as the Successor Repre-
sentation (SR) (Dayan, 1993), making the value-function
linear in the representation. However, one important lim-
itation of this approach is that the representation itself is
policy-dependent. Moreover, there is no natural method
for simple, online, “improvement” procedure analogue
to the policy-improvement step in value-based methods.
By contrast, in our work, the goal is to find a specific op-
timal policy for which the specific induced visitation dis-
tribution has a desired property (of maximum entropy).
Moreover, we take a particular initial-state distribution to
be part of the MDP definition, and this distribution is not
necessarily concentrated on a single state-action pair. As
we have shown, in order to learn (or compute) that op-
timal policy, it is possible to use various forms of state
representations, either tabular, or approximated.

There is a vast literature on exploration in RL. Partic-
ularly relevant for this work are approaches which dis-
associate exploration from external reward and rely on
some sort of “intrinsic motivation”, as discussed in §1
(and references therein).

Another aspect of exploration that is relevant to this
work is the challenge of achieving temporally-extended
(sometimes referred to as “deep”) exploration (Osband
et al., 2016a;b). Independently of reward, this can be ad-
dressed in the framework of model-based learning (Little



(a)

(b) (c)

Figure 5: (a) The MountainCar MDP. (b) Median “reward” Rent (solid line; 60 simulations) increases with learning
(see text). Shaded region denotes 25− 75 percentile. (c) Illustration of the learning process, showing a policy and its
induced visitation distribution at learning episodes 0 (initilaization, random policy), 50, 100, and 300. Top row depicts
log π(Left|s)

π(Right|s) . Horizontal dashed line denotes states with velocity = 0. Bottom row depicts histograms (normalized;
undiscounted) of visitations in 500 sampled trajectories from the policy. With the learned policy, the agent is able to
cover the (reachable) state-space much more uniformly, comparing to a random policy. Notably, the learned policy
generate diverse trajectories rather than choosing a particular trajectory.

(a) (b) (c)

Figure 6: Results on the Acrobot MDP (Sutton, 1996). (a) Median “reward”Rent (solid line; 60 simulations) increases
with learning. Shaded region denotes 25 − 75 percentile. (b), (c) Histograms of (undiscounted) state visits in 100
sampled trajectories from a random policy and from a trained policy, respectively. Visits are shown in the θ1θ2 plane
for visualization only – the original state-space include angular velocities θ̇1, θ̇2 as well.

and Sommer, 2014). Recently, generalized counters have
been proposed (Fox et al., 2018) as a method account-
ing for long-term consequences of exploration. These
generalized counters have been effectively implemented
in model-free RL (Fox et al., 2018; Oh and Iyengar,
2018). In our work, temporally-extended exploration is
achieved by defining a global objective which depends
on the interaction of the policy with the MDP dynamics.
This yields policies that take into account the future con-
sequences of actions, where the relevant future is con-

trolled by γ.

Entropy-based objectives for exploration has been previ-
ously proposed. However, most of those studies consid-
ered the entropy of the policy itself (Mnih et al., 2016;
Schulman et al., 2017; Haarnoja et al., 2018). This
approach, however, does not take into account the ex-
ploratory long-term consequences of actions. As a re-
sult, in the absence of (external) reward, these methods
imply that an optimal exploration policy is to choose ac-



(a) (b)

Figure 7: Proportion of agents (out of 60 simulated
agents) to reach the goal state per episode for the Moun-
tainCar MDP (a) and the Acrobot MDP (b). Agents
learn to reach goal by pure exploration, without ever ob-
serving any external rewards.

tions with equal probability. Independently of our work,
a recent study has proposed the same objective of maxi-
mizing the entropy of the discounted visitation distribu-
tion for exploration (Hazan et al., 2018). There are sev-
eral notable differences between that study and our work.
First, when the MDP is known, we show how a single
stationary policy can be efficiently computed from the
MDP (§2.3), rather than finding a mixture policy, as pro-
posed there. This approach also enabled us to study the
properties of the optimal exploration policy (§3). Sec-
ond, we propose a different solution in the case of un-
known MDPs. One advantage of our algorithm is that it
can be readily combined with standard RL methods for
maximizing average reward. For example, one can ap-
ply Policy Gradient learning on a linear combination of
the external reward and the exploration objective func-
tion Rent (Algorithm 2). Finally, we propose a method
for maximizing exploration in the feature space. This
method is applicable for continuous-state MDPs without
relying on density models for the state-space.

Learning complex behavior in the absence of reward
have also been studied from the perspective of options,
and in particular options discovery (Sutton et al., 1999;
Machado and Bowling, 2016; Machado et al., 2017). Our
approach yields policies which diversely cover the state-
space while also identifying important bottleneck states
(e.g. Figure 2), however it does not explicitly rely on
temporal-abstractions or non-stationary policies.

In the context of standard RL problems, effective explo-
ration should also be sensitive to the reward signal, be-
cause it is typically more useful to explore around the
state-actions that are estimated to be more valuable. In
such tasks our pure exploration approach can be com-
bined with reward-based learning. Optimal exploration
is particularly relevant to tasks in which the reward func-
tion is not stationary. Such tasks are common in neu-
roscience, where animals are often trained to repeatedly

search for food pallets placed in random locations in a
known environments (Knierim et al., 1995; Spiers et al.,
2013). Other relevant settings are task-agnostic RL sce-
narios, in which the goal is to learn an environment in
the absence of rewards, in order to later quickly solve
(possibly multiple) reward-related tasks.
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A Proofs of lemmas and theorem

Lemma 1. ρπγ is the unique solution to equation ρ = (1− γ)ρ0 + γWπρ. That is:

ρπγ = (1− γ) (I− γWπ)
−1

ρ0 (1)

Proof. By definition,

ρπγ (s, a) = (1− γ)
∞∑
t=0

γtP(t)
π [s, a] (2)

Separating the sum in equation (2) to t = 0 and t > 0 yields:

ρπγ (s, a) = (1− γ)P(0)
π [s, a] + γ (1− γ)

∞∑
t=0

γtP(t+1)
π [s, a]

The first summand is by definition (1− γ) ρ0 (s, a). For the second summand, because the visited
state-actions form a Markov chain, then:

P(t+1)
π [s, a] =

∑
s′,a′

Wπ
sa,s′a′P(t)

π [s′, a′]

and therefore

(1− γ)
∞∑
t=0

γtP(t+1)
π [s, a] =

∑
s′a′

Wπ
sa,s′a′ (1− γ)

∞∑
t=0

γtP(t)
π [s′, a′]

=
∑
s′a′

Wπ
sa,s′a′ρ

π
γ (s
′a′)

Combining both terms yields the following recursive equation (in vector form):
ρπγ = (1− γ)ρ0 + γWπρπγ (3)

Rearranging terms completes the proof. Note that I − γWπ is non-singular because Wπ is a
stochastic matrix and therefore its largest eigenvalue (in absolute value) is equal to 1. Because
0 < γ < 1, ρπγ is the unique solution to equation (3).

Lemma 2. Let ρπγ be the discounted visitation distribution induced by the policy π. Then for any

state s with non-zero (marginal) probability under ρπγ : π (a|s) = ρπγ (s,a)∑
a′ ρ

π
γ (s,a

′)

Proof. Since the policy is stationary, for every t we have P(t)
π [s, a] = P(t)

π [s]π (a|s). Using the
definition of ρπγ (s, a) (Equation (2)) and substituting the former identity yields the result.

Theorem 3. Assume ρ (s, a) is a distribution over state-action pairs, such that for every state s, the
following condition holds:∑

a′

ρ (s, a′) = (1− γ) ρ0S (s) + γ
∑
s′,a′

ρ (s′, a′)P (s|s′, a′) (4)

Let π (a|s) = ρ(s,a)∑′
a ρ(s,a

′)
. Then, ρ = ρπγ .

Proof. We assume
∑
a′ ρ (s, a

′) > 0 for all states. If this is not the case for a particular state s, then
we can arbitrarily define π (a|s) = 1

|A| .

Multiplying Equation (4) by π (a|s) = ρ(s,a)∑′
a ρ(s,a

′)
yields

ρ (s, a) = (1− γ) ρ0S (s)π (a|s) + γ
∑
s′,a′

P (s|s′, a′)π (a|s) ρ (s′, a′)

where the first summand is (1− γ) ρ0 (s, a) and the second summand is γ
∑
s′,a′ W

π
sa,s′a′ρ (s

′, a′).
Therefore, we get the following vector equation:

ρ = (1− γ)ρ0 + γWπρ

Using Lemma 1 completes the proof, since ρπγ is the unique solution to the last equation.
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B Maximum-Entropy exploration in feature-space: linear policies with
random features

Here we provides the technical details regrading the implementation of our approach to the Moun-
tainCar and Acrobot problems (§4.3). We standardized the observations (so that entries of the state
vectors s has 0 mean and unit variance), and constructed random features of the state-space using a
variant of Random Kitchen Sinks with Fourier features1 [2, 3]:

φi (s) =

√
2√
d
cos
(
a>i s+ bi

)
where ai,bi are random vectors with a ∼ N (0, 2αI) and b ∼ U [0, 2π]. α and d are parameters
(where d is the number of features). All reported results are using d = 20. The feature space was
constructed by concatenating two such feature vectors with α = 1 and α = 0.5. We denote the
feature-vector for a given state as φ (s).

Figure 1 illustrate a particular set of such random features in the MountainCar MDP (in which the
original state space is two dimensional, position and velocity):

Figure 1: Example of 40 random features for the MountainCar MDP.

The policy is parameterized by a matrix W of dimensions |A|×2d, such that π (·|s) ∝ exp{Wφ (s)}.
The score function for this model is:

∂

∂Wij
log π (a|s) = φj (s) (δia − π (ai|s)) (5)

Given a sampled trajectory (episode) τ = (s1, a1, . . . , sT , aT ), we calculate, for each feature, the
(discounted) probability of being positive:

qi =

∑T
t=0 γ

t
1[φi(st)>0]∑T
t=0 γ

t

The return of the trajectory is then defined to be the average (over features) of the binary entropies of
these probabilities:

Rent (τ) =
1

2d

2d∑
i=1

H2 [qi] (6)

where H2 [q] = −q log2 q − (1− q) log2 (1− q). Note that 0 ≤ Rent ≤ 1.

Taken together, Equations (5) and (6) specify the required quantities for the Policy Gradient learning
rule discussed in the main text (§4.2 and §4.3).

1Implemented by the RBFSAMPLER function in Scikit [1]
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Abstract4

Adapting to new environments is a hallmark of animal and human cognition, and Re-5

inforcement Learning (RL) models provide a powerful and general framework for studying6

such adaptation. A fundamental learning component identified by RL models is that in7

the absence of direct supervision, when learning is driven by trial-and-error, exploration8

is essential. The necessary ingredients of effective exploration have been studied exten-9

sively in machine learning. However, the relevance of some of these principles to humans’10

exploration is still unknown. An important reason for this gap is the dominance of the11

Multi-Armed Bandit tasks in human exploration studies. In these tasks, the exploration12

component per se is simple, because local measures of uncertainty, most notably visit-13

counters, are sufficient to effectively direct exploration. By contrast, in more complex14

environments, actions have long-term exploratory consequences that should be accounted15

for when measuring their associated uncertainties. Here, we use a novel experimental task16

that goes beyond the bandit task to study human exploration. We show that when local17

measures of uncertainty are insufficient, humans use exploration strategies that propagate18

uncertainties over states and actions. Moreover, we show that the long-term exploration19

consequences are temporally-discounted, similar to the temporal discounting of rewards in20

standard RL tasks. Additionally, we show that human exploration is largely uncertainty-21

driven. Finally, we find that humans exhibit signatures of temporally-extended learning,22

rather than local, 1-step update rules which are commonly assumed in RL models. All23

these aspects of human exploration are well-captured by a computational model in which24

agents learn an exploration “value-function”, analogous to the standard (reward-based)25

value-function in RL.26

Introduction27

When encountered with a novel setting, animals and humans explore their environment. Such28

exploration is essential for learning which actions are beneficial for the organism and which29

should be avoided. The speed of learning, and even the learning outcome, crucially depends on30
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‡Department of Cognitive Sciences, The Alexander Silberman Institute of Life Sciences, and The Federmann

Center for the Study of Rationality
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the “quality” of that exploration: for example, if as a result of poor exploration some actions31

are never chosen, their effects are never observed, and hence cannot be learned. More generally,32

a fundamental difference between learning by trial and error and Supervised Learning scenarios33

is that in the latter, the distribution of examples is controlled by the “teacher”, whereas in the34

former, the distribution of examples that the agent gets to observe depends on the agent’s own35

behavioral policy. Therefore, in order to successfully learn a good policy by trial and error,36

agents need to take into account uncertainty when choosing actions, reflecting the fact that the37

observations collected so far might mis-represent the actual quality of the different actions.38

Learning by trial and error is often abstracted in the framework of the computational problem39

of Reinforcement Learning (RL) (Sutton and Barto, 2018): An agent makes sequential decisions40

in an unknown environment; at each time-step, it observes the current state of the environment,41

and chooses an action from a set of possible actions. In response to this action, the environment42

transfers the agent to the next state, and provides a reward signal (which can also be zero or43

negative). The ultimate goal of the agent is to learn how to choose actions – i.e, learn a policy44

– such as to maximize some performance metric, typically the expected cumulative reward.45

Exploration algorithms in RL differ in the particular way they address uncertainties. Random46

exploration, in which a random component is added to the policy (e.g., a policy otherwise max-47

imizing based on current estimates) is, arguably, the simplest way of incorporating exploration.48

By adding randomness, the agent is bound to eventually accumulate information about all49

states and actions. More sophisticated exploration methods, referred to as directed exploration50

(Thrun, 1992), attempt to identify and actively choose the specific actions that will be more51

effective in reducing uncertainty. To do that, the agent needs to track and update some esti-52

mate or measures of uncertainty associated with different actions. For example, the agent can53

use visit-counters: keep track of the number of times each action was chosen in each state, and54

prioritize those actions that have previously been neglected (Auer et al., 2002; Bellemare et al.,55

2016; Tang et al., 2017; Ostrovski et al., 2017).56

The intuition behind counter-based methods can be made precise in the important case of57

Multi-Armed Bandit problems (or bandit problems, for short). In a k-armed bandit, the envi-58

ronment is characterized by a single state and k actions (“arms”), each associated with a reward59

distribution. Because these distributions are unknown, and feedback (i.e., a sample from the60

distribution) is given only for the chosen arm at each trial, exploration is needed to guaran-61

tee that the best arm (i.e., the one associated with the highest expected reward) is identified.62

Bandit problems are theoretically well-understood, with various algorithms having optimality63

guarantees, under some statistical assumptions (for a comprehensive review see Lattimore and64

Szepesvári, 2020). Particularly, counter-based methods (e.g., UCB, Auer et al., 2002) can be65

shown to explore optimally in bandit tasks, in the online-learning sense of minimizing regret.66

Human exploration has been studied extensively in bandit and bandit-like problems (Shteingart67

et al., 2013; Wilson et al., 2014; Mehlhorn et al., 2015; Gershman, 2018; Schulz et al., 2020).68

Because these are arguably the simplest form of RL problems, they offer a clean and potentially69

well-controlled framework for experiments (Fox et al., 2020). The strong theoretical foundations70

are another appeal for experimental work, because behavior can be compared with well-defined71

algorithms, and, potentially, also with an optimal solution.72

However, generalizing conclusions about human exploration from behavior in bandit tasks to73

behavior in more complex environments is not trivial. In a bandit task, an action that was74

chosen less times is, everything else being equal, exploratory more valuable compared to one75
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that was chosen more often. By contrast, visit-counters alone might be a poor measure of76

uncertainty in complex environments, because they completely ignore future consequences of77

the actions (Figure 1a). Indeed, the limitations of naive counter-based exploration in structured78

and complex environments have been discussed in the machine learning literature, and different79

exploration schemes that take into account the long-term exploratory consequences of actions80

have been proposed (Storck et al., 1995; Meuleau and Bourgine, 1999; Osband et al., 2016a,b;81

Chen et al., 2017; Fox et al., 2018).82

Our goal here is to study the extent to which human exploration is sensitive to long-term83

consequences of actions, as opposed to counter-based exploration. Crucially, this question84

cannot be addressed in the common bandit problems paradigm, because general exploration85

algorithms are reduced to counter-based methods when they are faced with a bandit problem.86

Thus, even if humans do (approximately) use some general, beyond visit-counters, directed87

exploration strategies, they will likely manifest as counter-based strategies in bandit tasks.88

Therefore, we set out to study exploration in a novel task that addresses these issues. First, we89

show that humans take into account the long-term exploratory consequences of their actions90

when exploring complex environments (Experimental results). Next, we model this exploration91

using an RL-like algorithm, in which agents learn exploratory “action-values” and use these92

values to guide their exploration (Computational modeling).93

Results94

Experimental results95

Sensitivity to future consequences of actions96

To test the hypothesis that human exploration is sensitive to the long-term consequences of97

actions, we conducted an experiment that formalizes the intuition presented in the Introduction98

(see Figure 1a). In the experiment (denoted as “Experiment 1”), participants were instructed to99

explore a novel environment, a maze of rooms, by navigating through the doors connecting those100

rooms (Figure 1b). Each room was identified by a unique background, a title, and the number101

of doors in that room. No reward was given in this task, but participants were instructed to102

“understand how the rooms are connected” (see Methods). Testing participants in a task devoid103

of clear goal and rewards is somewhat unorthodox. We go back to this point in the Discussion104

section.105

Three groups of participants were tested, each in a different maze as is described in Figure 1c106

(top): In all mazes, there was a start room (S) with two doors, each leading to a different room.107

One of these rooms, a multi-action room (MR) was endowed with nR doors, while the other,108

denoted asML, was endowed with nL doors. All three mazes were unbalanced, in the sense that109

nR > nL. Between the different mazes, we varied nR−nL, while keeping nR+nL = 7 constant.110

The locations of the doors leading to MR and ML were counterbalanced across participants.111

For clarity of notation, we refer to them as “right” and “left”, respectively. All other remaining112

rooms were endowed with only a single door. After going through these single-door rooms, a113

participant would reach a common terminal room (T ). There, they were informed that they114

reached the end of the maze and then they were transported back to S. Overall, each participant115
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Figure 1: Directed exploration in complex environments. (a) In a bandit problem (left), actions have no
long-term consequences. In complex environments (right), actions have long-term consequences as particular
actions might lead, in the future, to different parts of the state-space. In this example, these parts (shaded areas)
are of different size. As a result, the local visit-counters are no longer a good measure of uncertainty. In this
example, a2 should be, in general, chosen more often compared to a1 in order to exhaust the larger uncertainty
associated with it. (b) Participants were instructed to navigate through a maze of rooms. Each room was
identified by a unique background image and a title. To move to the next room, participants chose between
the available doors by mouse-clicking. Background images and room titles (Armenian letters) were randomized
between participants, and were devoid of any clear semantic or spatial structure. (c) The three maze structures
in Experiment 1 (Top) have a root state S (highlighted in yellow) with two doors. They differ in the imbalance
between the number of doors available in future rooms MR and ML (nR : nL – 4:3, 5:2, 6:1). Consistent with
models of directed exploration that take into account long-term consequences of actions, and unlike counter-
based models, participants exhibited bias towards roomMR, deviating from a uniform policy (Bottom, bars and
error-bars denote mean and 95% confidence interval of pR; number of participants: n = 161; 120; 137. Statistical
significance, here and in following figures: ∗ : p < 0.05, ∗∗ : p < 0.01; ∗∗∗ : p < 0.001).

visited S (of the one particular environment they were assigned to) 20 times.116

Since there was no reward, all choices in this task are exploratory. If participant’s exploration117

is driven by visit-counters, then we expect that the frequencies in which they choose each of the118

doors in S, denoted pR and pL, would be equal. By contrast, if they take into consideration the119

long-term consequences of their actions, then we would expect them to choose the right door120

more often (resulting in pR > pL). In line with the hypothesis that participants are sensitive121

to the long-term consequences of their actions, we found that averaged over all participants122

in the three conditions, pR > pL (pR = 0.54, 95% confidence interval: pR ∈ [0.518, 0.563]).123

Considering each group of participants separately, significant bias in favor of pR was observed124

in the 6:1 (pR = 0.572, n = 137, 95% CI: [0.528, 0.617]) and the 5:2 groups (pR = 0.549,125

n = 120, 95% CI: [0.506, 0.592]), but not in the 4:3 group (pR = 0.507, n = 161, 95% CI:126

[0.472, 0.541]).127

We hypothesized that the larger the imbalance (nR−nL), the stronger will be the bias towards128

MR (larger pR). To test this hypothesis, we compared the biases of participants in the different129

groups (Figure 1c). As expected, the average pR in the 5:2 and 6:1 groups was significantly130
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larger than that of the 4:3 group (p < 0.05 and p < 0.01 respectively, permutation test, see131

Methods). The average pR in the 6:1 group was larger than that of the 5:2 group. However,132

this difference was not statistically significant (p = 0.17).133

The results depicted in Figure 1c indicate that on average, human participants are sensitive to134

the exploratory long-term consequences of their actions. Considering individual participants,135

however, there was substantial heterogeneity in the biases exhibited by the different partici-136

pants. While some chose the right door almost exclusively, others favored the left door. We next137

asked whether some of this heterogeneity across participants reflects more general individual-138

differences in exploratory strategies, which would also manifest in their exploration in other139

states. To test this hypothesis, we focused on state MR. In this state, exploration is also140

required because there are nR different alternatives to choose from. However, unlike in state S,141

these alternatives do not, effectively, have long-term consequences. As such, choosing an action142

in MR is a bandit-like task. Thereofre, directed exploration in MR is expected to be driven by143

visit-counters, such that participants would equalize the number of times each door in MR is144

selected. Note that this is not a strong prediction, because random exploration will, on average,145

also equalize the number of choices of each door. Yet, directed and random exploration have146

diverging predictions with respect to the temporal pattern of choices in MR. Specifically, with147

pure directed exploration (that is driven by visit-counters), participants are expected to avoid148

choosing the same door that they chose the last time that they visited MR. Consequently,149

the probability of repeating the same choice in consecutive visits of MR, which we denote by150

prepeat, is expected to vanish. By contrast, random exploration predicts that prepeat = 1/nR.151

Figure 2 (Top) depicts the histograms (over participants) of prepeat in the three experimental152

conditions, demonstrating that participants exhibited substantial variability in prepeat. While153

for some participants prepeat was close to 0, as predicted by pure directed exploration, for others154

it was similar to 1/nR, as predicted by random exploration. Many other participants exhibited155

prepeat that was even larger than 1/nR, indicating that, potentially, choice bias and / or mo-156

mentum also influenced choices in the task. Based on the predictions of directed and random157

exploration, we divided participants into two groups, depending on the quality of exploration158

in MR: “good” directed explorers, in which prepeat < 1/nR, and “poor” directed explorers, in159

which prepeat ≥ 1/nR (Figure 2 Top, dots and diagonal stripes, respectively).160

Is the quality of directed exploration in the bandit-like task of state MR informative about di-161

rected exploration in S? To address this question, we computed the histograms of pR separately162

for the “good” and “poor” directed explorers (Figure 2 Bottom). Averaging within each group163

we found that indeed, pR among the “poor” explorers was not significantly different from chance164

in any of the three conditions (Figure 3a), consistent with the predictions of random explo-165

ration. By contrast, among “good” explorers, there was a significant bias in the 5:2 (pR = 0.597,166

n = 53, 95% CI: [0.537, 0.652]) and the 6:1 (pR = 0.612, n = 71, 95% CI: [0.544, 0.678]) groups167

(Figure 3b). These findings show that participants that avoid repetition in the bandit task are168

also more sensitive to the long-term exploratory consequences of their actions. We conclude169

that those participants who tend to perform good directed exploration in MR also perform170

good directed exploration in S. Crucially, the implementation of directed exploration in the171

two states is rather different. In MR, where different actions have no long-term consequences,172

“good” explorers rely on visit-counters that are the relevant measure of uncertainty, resulting in173

an overall uniform choice. By contrast in S, actions do have long-term consequences, and “good”174

explorers go beyond the visit-counters, biasing their choices in favor of the action associated175

with more future uncertainty.176
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Figure 2: Heterogeneity in exploration strategies. Top: Histograms of prepeat at state MR (highlighted
in yellow) for participants in the three conditions of Experiment 1 (left to right: nR = 4, 5, 6). Dashed vertical
line represents the value expected by chance, 1/nR. Based on their prepeat values, we divided participants into
“good” and “poor” directed explorers (dotted and striped patterns, respectively; “good” explorers proportion:
40%, 44%, 51%). Bottom: Histograms of pR at state S (highlighted in yellow), for the “good” and “poor”
directed explorers groups.

Temporal discounting177

In the previous section we showed that if the future exploratory consequences of the actions are178

one trial ahead, humans are sensitive to these consequences. It is well known that in humans179

and animals, the value of a reward is discounted with its delay (Vanderveldt et al., 2016).180

We hypothesized that similar temporal discounting will manifest in evaluating the exploratory181

“usefulness” of actions. To test this prediction, we conducted Experiment 2 on a new set of182

participants. Similar to Experiment 1, Experiment 2 consisted of 3 different maze structures.183

The imbalance between the number of possible outcomes was kept fixed across 3 mazes, at184

nR = 5 and nL = 2. However, the depth at which these outcomes occur, relative to the185

root state S, varied between 1 (as in Experiment 1) to 3 (Figure 4, Top). The depth of MR186

determines the delay between the choice made at S and its exploratory benefit. In the presence187

of temporal discounting of exploration, we therefore expect pR to decrease with the depth of188

MR.189

To test this prediction, we divided participants to “good” and “poor” directed explorers, as in190

Experiment 1, based on the degree of prepeat in MR. As depicted in Figure 4, both the “poor”191

and “good” explorers exhibited a bias in favor of “right” in S. For the “good” explorers, a larger192

delay was also associated with a smaller bias.193
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Figure 3: “Poor” and “good” directed explorers. Choice biases at state S (pR) analyzed separately for
“poor” and “good” explorers (striped and dotted patterns; divided based on their exploration inMR, see Figure 2)
in the 3 conditions of Experiment 1. While behavior of the “poor” explorers was not significantly different from
chance (consistent with the prediction of random exploration), “good” explorers in the nR = 5, 6 conditions
exhibited significant bias towards “right”. Bars and error bars denote mean and 95% confidence interval of pR;
number of participants n = 95; 66 67; 53, 66; 71 (“poor”; “good”).
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Figure 4: Temporal discounting of exploratory consequences. The three mazes in Experiment 2 (Top)
had the same imbalance (nR = 5, nL = 2), however we varied the depth of MR (and ML) relative to the
root state S (left to right: depth = 1, 2, 3). “Poor” and “good” directed explorers (striped and dotted patterns,
respectively) were divided by their prepeat value at MR (same as in Experiment 1, see Figure 2). Bars and
error-bars denote mean and 95% confidence interval of pR. Number of participants n = 99; 92, 121; 84, 153; 85
(“poor”; “good”).
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The dynamics of exploration194

Insofar, we demonstrated that human participants exhibit directed exploration in which they195

take into their considerations the future exploratory consequences of their action. To bet-196

ter understand the computational principles underlying this directed exploration, we revisit197

the question of why explore in the first place. One possible answer to this question is that198

exploration is required for learning. According to this view, actions are favorable from an199

exploratory point of view when they are associated with, or lead to other actions associated200

with, high uncertainty, missing knowledge, and other related quantities (Schmidhuber, 1991;201

Still and Precup, 2012; Little and Sommer, 2014; Houthooft et al., 2016; Pathak et al., 2017;202

Burda et al., 2019). An alternative, that has received some attention in the machine learning203

literature, is that exploration could be driven by its own normative objective (Machado and204

Bowling, 2016; Hazan et al., 2019; Zhang et al., 2020; Zahavy et al., 2021). For example, such205

objective could be to maximize the entropy of the discounted distribution of visited states and206

chosen actions (Hazan et al., 2019). Experimentally, the difference between the two approaches207

will be particularly pronounced towards the end of a long experiment. When all states and208

actions had been visited sufficiently many times, everything that can be learned has already209

been learned. Thus, if the goal of exploration is to facilitate learning, then exploratory behavior210

is expected to fade over time. By contrast, if exploration is driven by a normative objective,211

then we generally expect behavior to converge to a one that (approximately) maximizing this212

objective, and hence maintaining asymptotic exploratory behavior.213

Specifically considering Experiment 1 and 2, we do not expect any bias in S (pR = 0.5) in the214

beginning of the task, because participants are naive and are unaware of the different long-term215

consequences of the two actions. With time and learning, we expect participants to favor MR216

over ML (pR > 0.5). This prediction holds either if participants are driven by the goal of217

reducing the (long-term) uncertainty associated with MR, or by the goal of optimizing some218

exploration objective, such as to match the choices per door in MR and ML. In other words,219

both approaches predict that with time, pR will increase. With more time elapsing, however,220

the predictions of the two approaches diverge. As uncertainty decreases, uncertainty-driven221

exploration predicts a decay of pR to its baseline value (p∗R = 0.5). By contrast, the normative222

approach predicts that pR will converge to a p∗R > 0.5 steady-state.223

Figure 5 depicts the temporal dynamics of pR (t), as a function of the number of times t that224

S was visited (defined as “episodes”). The learning curves are shown separately for the “poor”225

(Figure 5a) and “good” (Figure 5b) explorers, averaged over all 6 conditions of Experiments226

1 and 2. As expected, there was no preference in the first episodes. However, with time,227

the participants developed a bias in favor of MR, which was more pronounced in the “good”228

directed explorers group. In this group, participants exhibited a significant bias, pR (t) > 0.5229

from the 3rd episode. Notably, this increased bias was followed by a decrease to a steady230

state bias value (episodes 10 − 20). This steady state value was lower than its peak transient231

value (consistent with uncertainty-driven exploration), but was higher than baseline level before232

learning (consistent with a normative exploration objective).233
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(a) (b)

Figure 5: Learning dynamics. Bias towards MR as a function of training episode (pR (t)), averaged over
participants in all 6 conditions (Experiments 1 & 2), shown for the “poor” (a) and “good” (b) groups. The
“good” explorers exhibited a transient peak in pR (t), consistent with models of uncertainty-driven exploration.
However, the steady-state value p∗R was still slightly larger than chance, consistent with an objective-driven
exploration component. Dots and shaded areas denote mean and 95% confidence interval of pR (t).

Computational modeling234

The model235

Together, the two experiments of the previous sections provide us with the following insights:236

(1) Humans exploration is affected by long-term consequences of actions (Figure 1c); (2) Both237

the number of future states and their depth affect this exploration (Figure 3 and Figure 4);238

and finally, (3) Exploration dynamics peaks transiently and then decays, consistent with an239

uncertainty-driven exploration (Figure 5).240

In theorizing about effective exploration we have alluded to concepts such as “exploratory241

value” or “usefulness” of particular actions, but did not provide a precise working definition for242

it. In this section we consider a specific computational model for directed exploration, and test243

this model in view of these experimental findings. The model is a general-purpose algorithm244

for directed exploration, which formalizes the intuition that the challenge of exploration in245

complex environments is analogous to the standard credit-assignment problem in RL (in the246

reward-maximization sense).247

According to the model, the agent observes the current state of the environment s at each248

time-step and chooses an action a from the set of possible actions. In response to this action,249

the environment transfers the agent to the next state s′, at which the agent chooses action a′.250

Each state-action pair (s, a) is associated with an exploration value, denoted E (s, a) (Fox et al.,251

2018). These exploration values represent a current estimate of “missing knowledge”, such that252

a high value indicates that further exploration of that action is beneficial. At the beginning253

of the process, E-values are initialized to a positive constant (specifically E = 1), representing254

the largest possible missing knowledge. Each transition from s, a to s′, a′ triggers an update to255

E (s, a) according to the following update rule:256

E (s, a)← E (s, a) + η (−E (s, a) + γE (s′, a′)) (1)

In words, the change in E (s, a) is a sum of two contributions. The first, −E (s, a), is the257
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immediate reduction in the uncertainty regarding state s and action a due to the current visit258

of that state-action. The second, γE (s′, a′) represents future uncertainty propagating back to259

(s, a). This second part is weighted by a discount-factor parameter, 0 ≤ γ ≤ 1. The overall260

update magnitude is controlled by a learning-rate parameter 0 < η < 1. In the particular case261

that s′ is a terminal state, its exploration value is always defined as 0.262

To complete the model specification, we define the policy as derived directly from these explo-263

ration values. We use a standard softmax policy, in which the probability of choosing an action264

a in state s is given by:265

π (a|s) = eβE(s,a)∑
a′ e

βE(s,a′)
(2)

where β ≥ 0 is a gain parameter. A gain value of β = 0 corresponds to random exploration,266

with all actions chosen at equal probability, while a positive gain corresponds to (stochastically)267

preferring actions associated with a larger E-value (and hence higher uncertainty).268

Conceptually, this model is similar to standard RL algorithms (specifically the sarsa algroithm,269

Rummery and Niranjan, 1994) that are used to account for operant learning in animals and270

humans. There, a similar update rule is used to learn the expected discounted sum of future271

rewards (and a similar rule is assumed for action-selection). Therefore, similar cognitive mech-272

anisms that account for operant learning, can account for this type of directed exploration (at273

least to the extent that standard RL models are indeed a good descriptions of operant learning;274

see Mongillo et al., 2014; Fox et al., 2020).275

To gain insight into the properties of the E-values, we consider first the case of “infinite”276

discounting, namely γ = 0. In that case, the update rule of Equation 1 becomes:277

E (s, a)← (1− η)E (s, a) (3)

and hence, after n visits of (s, a), the associated E-value is E (s, a) = (1− η)n, such that278

− logE ∝ n.1 In other words, when γ = 0, and long-term consequences are completely ignored,279

the E-value is effectively a visit-counter.280

When γ > 0, the change in the value of E (s, a) following a visit of (s, a) is more complex.281

In addition to the decay term, a term that is proportional to E (s′, a′) is added to E (s, a).282

Notably, E (s′, a′) depends on the number of past visits of (s′, a′), (as well its own future states283

(s′′, a′′) and so on). Consequently, the number of actual visits that is required to reduce the284

E-values by a given amount is larger in state-actions leading to many future states than in285

state-actions leading to fewer future states. In that sense, the E-values are a generalization of286

visit-counters.287

Finally (and regardless of the value of γ), the softmax policy of Equation 2 favors actions asso-288

ciated with larger E-values. Because choosing these actions will generally lead to a reduction289

in their associated E-values, the result will be a policy that effectively attempts to equalize the290

E-values of all available actions (within a given state). In the case of γ = 0, this will result291

in a preference toward those actions that were chosen less often. In the case of γ > 0, it will292

result in a preference that is also sensitive to (the number of) future potential states reachable293

through the different actions.294

To conclude, the model therefore encapsulates the three principles identified in human be-295

havior – it propagates information to track long-term uncertainties associated with individual296

1because η < 1, we have that log (1− η) < 0.
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state-actions, it temporally discounts future exploratory consequences, and it uses estimated297

uncertainties to derive a behavioral policy.298

Directed-exploration in the maze task299

We now return to the maze task and study the behavior of the model there. In state MR,300

where the E-values correspond to visit-counters, the attempt to equalize the E-values will301

result in a bias against repeating the same action, yielding a low prepeat value and on average,302

a uniform policy. To demonstrate this, we simulated behavior of the model in the 3 conditions303

of Experiments 1. Indeed, as depicted in Figure 6a, the values of prepeat in the simulations were304

smaller than chance-level. Unlike the population of human participants, simulated agents are305

more homogeneous, as reflected in the narrower histograms of prepeat. This is due to the fact306

that the model is designed to perform directed exploration, that is, to model the behavior of307

the “good” directed explorers. Nevertheless, the model can also produce random exploration if308

the gain parameter is set to β = 0 (see also Discussion).309

More interesting is the behavior of the model in state S. The larger nR, the smaller will be310

the decay of E (s = S, a = right) per a single visit of (s = S, a = right). Therefore, the model311

will tend to choose “right” more often (pR > 0.5), a bias that is expected to increase with nR.312

Indeed, similar to the behavior of the “good” human explorers, the simulated agents exhibited313

a preference towards “right” in S, a preference that increased with nR − nL (Figure 6b).314

The model is sensitive to long-term consequences because it propagates future uncertainty, from315

the next visited state-action back to the current state-action. This future uncertainty, however,316

is weighted by γ < 1, such that the effect of further away states on E (s, a) is expected to317

decrease with distance. In the environments of experiment 2, where we manipulated the depth318

of MR (relative to S), this will result in a decrease of the bias (pR) at S, as demonstrated in319

Figure 6c.320

Because the policy in the model is derived from the E-values, the temporal pattern of ex-321

ploration is expected to be transient. In the first episodes, when E (s = S, a = right) =322

E (s = S, a = left), the result is pR = 0.5. With sufficient learning, exploration values of all323

visited state-actions decay to 0 and in this limit, pR = 0.5 as well. Therefore, we expect the324

learning dynamics to exhibit a transient increase in bias, followed by a decay back to chance325

level. This is demonstrated in Figure 6d where we plot pR (t), averaged over the simulations of326

the model in all six conditions of Experiments 1 and 2.327

Qualitatively, the transient dynamics resemble the experimental results (Figure 5b). However,328

there are two important differences. First, while the human participants exhibited what seems329

like a steady-state bias even at the end of the experiment, pR in the model decays to chance level.330

As discussed above, the decay to chance in the simulations is expected because exploration in331

the model is uncertainty-driven. In the framework of this model, steady-state exploration can332

be achieved if we assume that β is not stationary, but rather increases over episodes. However,333

we hypothesize that to capture this aspect of humans’ exploration, we may need to go beyond334

this class of uncertainty-driven models. Second, the transient dynamics of the model are longer335

than that of the human participants. While the learning speed in the model is largely controlled336

by the learning-rate parameter η, the value of η cannot by itself explain this gap. This is because337

in the model η < 1, and the dynamics cannot be arbitrarily fast. Particularly, in the simulations338
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Figure 6: Simulations results. Simulating behavior of the E-values model (Equation 1–2) reproduces the
main findings of directed exploration in the maze task. (a) InMR, the model exhibits directed exploration which
manifests in low values of prepeat (shown for the 3 conditions of Experiment 1; dashed line denote chance-level
expected for random exploration, 1/nR) (b) In the environments of Experiment 1, agents exhibited bias towards
MR that increased with imbalance of nR : nL, reflecting the propagation of long-term uncertainties over states.
(c) In the environments of Experiment 2, the bias decreased with depth, reflecting temporal discounting.
(d) Bias towards MR peaks transiently, followed by a decay to baseline at steady-state, as expected from
uncertainty-driven exploration (average results over all 6 environments). Results are based on 3,000 simulations
in each environment. Bars and histograms in (a)-(c) are shown for the first 20 episodes for comparison with the
behavioral experiments. Error bars are negligible and therefore are not shown. Model parameters: η = 0.9, β =
5, γ = 0.6.

of Figure 6d we have used a large learning-rate of η = 0.9, but learning was still considerably339

slower compared to human participants. We further discuss the issue of learning speed in the340

next section.341

Learning dynamics: 1-step updates and trajectory-based updates342

To learn to prefer “right” in S, the agent needs to learn that this action leads, in the future,343

to MR, which from an exploratory point of view is superior to ML. This kind of learning of344

delayed outcomes is typical of RL problems, in which the agent needs to learn that the value345

of a particular action stems from its consequences, which can be delayed. For example, an346

action may valuable because it leads to a large reward, even if this reward is delayed. In the347

RL literature this is known as the credit assignment problem, because during learning, upon348

observing a desired outcome (in “standard” RL, getting a large reward; here, arriving at MR),349

the agent needs to properly assign credit for past actions that have led to this outcome.350

RL algorithms typically address the credit assignment problem by propagating information351
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about the reward backwards through sequences of visited states and actions (Sutton, 1988;352

Watkins and Dayan, 1992; Dayan, 1992). According to some RL algorithms, the information353

about the reward propagates backwards one state at a time. By contrast, in other algorithms, a354

trace of the entire trajectory is maintained, allowing the information to “jump” backwards over a355

large number of states and actions. We refer to these alternatives as 1-step and trajectory-based356

updates, respectively.357

The E-values model can be understood as an RL algorithm that propagates visitations infor-358

mation (rather than reward information). Specifically, it uses 1-step updates (Equation 1) such359

that with each observation (a transition of the form s, a, s′, a′) only immediate information,360

from (s′, a′), is used to update the exploration value of (s, a). With 1-step updates it takes time361

(episodes) for information from MR to reach back to S. We hypothesized that this reliance362

on 1-step updates might be an important source for the difference in learning speed between363

the model and humans, who might use more temporally-extended learning rules. To test this,364

we considered an extension to the exploration model in which E-values are learned using a365

trajectory-based update rule. Technically, this corresponds to changing the TD algorithm of366

Equation 1 to a TD (λ) algorithm (see Methods, Algorithm 1). Simulating this extended model367

we found that, similar to the original model, it reproduces the main experimental findings368

(Figure S1, compare with Figure 6). Moreover, as predicted, learning is faster than that the369

learning in the original model (Figure S1d, compare with Figure 6d). Nevertheless, even this370

faster learning is still slower than the rapid learning observed in human participants, suggesting371

further components of human learning that are not captured by either of the models (we get372

back to this point in the Discussion).373

Another way of distinguishing between 1-step and trajectory-based updates is to consider the374

predictions they make in Experiment 2. Recall that the three conditions in Experiment 2 differ375

in the delay (in the sense of number of states) between S and MR. If information (about the376

exploratory “value” of MR) propagates one step at a time, then the time it takes to learn that377

“right” is preferable in S will increase with the delay: it will be shortest in Condition 1, in which378

MR and ML are merely one step ahead of S, and longest in Condition 3, in which MR and ML379

are three steps away from S (Figure 7, top left). By contrast, if information about MR and ML380

can “jump” directly to S within each episode, as in trajectory-based updates, learning speed381

will be comparable in all three conditions (Figure 7, top right). A more thorough analysis of382

the model dependence on the parameters γ and λ is depicted in Figure S2. Finally, Figure 7383

(bottom) depicts the learning dynamics of the “good” human explorers, analyzed separately384

in the three conditions of Experiment 2. We did not find evidence supporting the hypothesis385

that learning time increases with depth. These results further support the hypothesis that386

human learning relies on more global, temporally-extended update rules in which information387

can “jump” backwards over several states and actions.388
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Figure 7: 1-step backups and trajectory-based updates. Learning dynamics simulated by the E-values
model using the 1-step backup learning rule of TD (0) (Equation 1–2; top left) and the trajectory-based learning
rule TD (λ) (Methods, Algorithm 1; top right) in the 3 environments of Experiment 2. With TD (0), the depth
of MR relative to S (depth = 1, 2, 3) affects both the peak value of pR (t) (due to temporal discounting) and
the time it takes the model to learn (due to the longer sequence of states over which the information has to be
propagated). By contrast, with TD (λ), different depths result in a different maximum bias (due to temporal
discounting), but the learning time is comparable (because information is propagated over multiple steps in
each update). For the same reason, learning is overall faster with TD (λ). In humans (bottom), peak bias
decreased with depth (consistent with temporal-discounting), but there was no noticeable difference in learning
speed (consistent with trajectory-based updates). Learning curves of human participants are shown with a
moving-average of 3 episodes. Dots and shaded areas denote means and 70% confidence intervals of pR (t).
Model results are average over 30, 000 simulations; model parameters: η = 0.9, β = 5, γ = 0.6, and λ = 0.6 (for
the TD (λ) model).
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Discussion389

Exploration is a wide phenomenon that has been linked to different aspects of behavior, includ-390

ing foraging (Mobbs et al., 2018; Kolling and Akam, 2017), curiosity (Gottlieb and Oudeyer,391

2018), and creativity (Hart et al., 2018). In this study, we focused on exploration as part of392

learning. For that, we use the framework of RL, in which exploration is an essential component.393

Particularly, we study the computational principles underlying human exploration in complex394

environments – sufficiently complex such that exploration per se requires learning, due to de-395

layed and long-term consequences of actions. Our approach builds on the analogy between the396

challenges of learning to explore, and the challenges of learning to maximize reward – the latter397

being the standard RL scenario. In both cases, the agent needs to represent information, prop-398

agate it, and use it to choose actions. In the former case it is information about uncertainty399

and in the latter it is information about expected reward.400

We found that while exploring in complex environments, humans are sensitive to long-term401

consequences of actions and not only to local measures of uncertainty. Moreover, such long-402

term exploratory consequences are temporally-discounted, similar to the discounting of future403

rewards. Finally, the dynamics of exploration is consistent with the predictions of uncertainty-404

driven exploration, in which directed exploratory behavior peaks transiently, and then decay405

to a more random exploration (supposedly when most of the uncertainty have been resolved).406

To account for these experimental results, we introduce a computational model that uses a407

RL-like learning rule implementing the aforementioned principles. In the model, information408

about state-action visits, rather than about reward as in standard RL algorithms, is being409

propagated (and discounted) over sequences visited state-actions. This results in a set of410

“exploration values” (analogous to reward-based values) which are then used to choose actions.411

Directed exploration beyond bandit tasks Previous studies have identified some com-412

ponents of directed exploration in human behavior using bandit tasks (Wilson et al., 2014;413

Gershman, 2018, 2019), particularly, the use of counter-based methods such as Upper Confi-414

dence Bounds (UCB, Auer et al., 2002). Going beyond the bandit, we were able to show that415

these counter-based strategies might be a special case implementation (appropriate for bandit416

tasks) of more general principles. To study and identify these principles, it is therefore neces-417

sary to test human exploration in environments that are more complex than the bandit task.418

Indeed a more recent study have shown that more general principles might underlie human419

exploration, both random and directed, in sequential tasks (Wilson et al., 2020). However,420

unlike our experiments, in that study actions did not have long-term consequences in the sense421

of state transitions. Finally, the necessity of going beyond simple bandit tasks is not unique422

to the study of exploration alone. It is present also when studying other components of RL423

algorithms underlying operant learning. For example, it is impossible to distinguish in a bandit424

task between model-based and model-free RL, because there is no “model” to be learned in those425

tasks (Daw et al., 2011).426

Non-stationary aspects of exploration While the analogy between learning to explore427

and learning to maximize rewards is a useful one, there are some important differences. One428

difference is that while in RL, rewards (more precisely, the distribution thereof) are typically429

assumed to be Markovian and stationary, exploration has a fundamental non-stationary nature.430

This is due to the fact that if exploration is interpreted as part of the learning process, or is431
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uncertainty driven, then the exploratory “reward” from a given state-action will decrease over432

time, because uncertainty will reduce with visits of that state-action. This non-stationarity433

poses a challenge for exploration algorithms. The E-values model circumvents that by assum-434

ing a stationary (and constant) zero fictitious “reward”, combined with an optimism bias at435

initialization (Fox et al., 2018).436

A different solution to the challenge of non-stationarity is to posit an exploration objective437

function which is by itself independent of learning. The predictions of the two classes of438

models differ with respect to the expected steady-state behavior. In the former, exploration439

will diminish over time while in the latter, it will be sustained. The observation that human440

participants maintain a preference (albeit relatively small) for “right” even at the end of the441

experiment suggests that human exploration is driven, at least in part, by more than just442

uncertainty. A more complete characterization of these two components will be an interesting443

topic for future work.444

Finally, non-stationary components can be incorporated within the context of uncertainty-445

driven exploration and the E-values model to account for steady-state exploratory behavior.446

For example, a different model might posit that rather than only decaying with visits, E-values447

of specific state-actions are also increased with each step in which these state-actions were not448

visited. This will lead to a “recency” drive that might be important in non-stationary envi-449

ronments, and will promote a non-trivial steady-state exploratory behavior. A more delicate450

option has to do with the functional form of the action-selection function. In particular, chang-451

ing from softmax to “hard” max (i.e., greedy E-value) will lead to a convergence to a non-trivial452

steady-state policy. The intuition is that while all E-values decay to 0, the rate of decay is453

different for different state-actions, and a “greedy E” policy converges to the one that attempts454

at equalizing these rates for different actions (within each state separately). Practically, this455

can also be achieved by gradually increasing the gain parameter β as a function of time.456

Pure-exploration and the role of reward It has been long argued that at least part of457

human and animal behavior is driven by intrinsic motivation, which is largely independent of458

external rewards (Oudeyer and Kaplan, 2009; Barto, 2013). Pure exploration tasks can be459

used to characterize aspects of such intrinsic motivation. In this study, the “desire” to visit460

less-visited states is one such intrinsic motivation factor. Additional factors that are based on461

information-theoretic quantities (Still and Precup, 2012; Little and Sommer, 2014; Houthooft462

et al., 2016) or prediction errors of non-reward signals (Pathak et al., 2017; Burda et al., 2019)463

have also been proposed in the literature. While many of these will, in general, be correlated,464

and hence difficult to identify experimentally, we believe that future studies of pure-exploration465

in complex environments will allow to better relate these concepts, mostly discussed in the466

theoretical and computational literature, to the learning and behavior of humans and animals.467

To dissect the exploratory component of behavior, we focused on a pure-exploration, reward-468

free task. This allowed us to neutralize the exploration-exploitation dilemma, focusing on the469

unique challenges for exploration itself. More generally, we expect the identified exploration470

principles to be relevant also in the reward maximization scenario. Indeed, it has been shown471

theoretically and empirically that the naive use of counter-based methods (or other “local”472

exploration techniques) can be highly sub-optimal for learning an optimal policy (in the re-473

ward maximization sense) in complex environments (Osband et al., 2016a,b; Chen et al., 2017;474

Fox et al., 2018; Oh and Iyengar, 2018). How humans deal with the exploration-exploitation475

dilemma in complex environments is an important open question.476
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Implications for neuroscience Algorithms such as TD-learning hold considerable sway477

in neuroscience. For example, it is generally believed that dopaminergic neurons encode re-478

ward prediction errors, which are used for learning the “values” of states and actions (Schultz479

et al., 1997; Glimcher, 2011, but see also Elber-Dorozko and Loewenstein, 2018). More recent480

studies suggest that in fact, the brain maintains a separate representation of different reward481

dimensions (Smith et al., 2011; Grove et al., 2022). Given that our formalism of uncertainty482

(E-values) is identical to that of other types of value, it would be interesting to test whether483

the representation of uncertainty in the brain is similar to that of other reward types. For484

example, whether dopaminergic neurons also represent the equivalent of E-values TD-error.485

Along the same lines, it would be interesting to check whether the finding that dopaminergic486

neurons encode what seems to be reward-independent features of the task (Engelhard et al.,487

2019) can be better understood assuming that uncertainty is a reward-like measure.488

Heterogeneity There was a substantial heterogeneity among participants in both Exper-489

iments 1 and 2. We used this heterogeneity to divide participants into “good” and “poor”490

explorers in terms of the “directedness” of their exploration. However, this division is some-491

what crude. For example, while bias in favor of MR was smaller in the “poor” explorers, it492

was still larger than the baseline level of 0.5 predicted by a true random exploration behav-493

ior (Figure 5a). This separation can be understood as a first approximation, highlighting the494

more prominent source of exploratory behavior at the individual subject basis. Moreover, even495

within the “good” explorers, there was considerable variability. Heterogeneity in the parameters496

of the computational model can, perhaps, explain some of the heterogeneity, but parameters497

variability alone (within the E-values model) certainly cannot explain all of the heterogeneity in498

participants’ behavior. For example, consider again the division to “poor” and “good” directed499

explorers. In principle, such a division could be modeled through the gain parameter β, with500

random explorers having a value of β = 0 (and directed explorers a value of β > 0). Even with501

random exploration, the model prediction for prepeat is 1/nR. By contrast, many participants502

exhibited values of prepeat larger than this chance-level, all the way up to prepeat = 1. Similarly,503

considering behavior at S as measured by pR, no combination of model parameters predict504

pR values which are smaller than 0.5. This is because even random exploration will result in505

pR = 0.5. Values of pR that are close to 1 are also impossible in the model, because they imply506

under-exploration of the left-hand-side of the maze. Yet some human participants exhibited507

extreme (close to 0 or 1) values of pR. Other factors, such as (task-independent) choice bias508

(Baum, 1974; Laquitaine et al., 2013; Lebovich et al., 2019) and tendency to repeat actions509

(Urai et al., 2019) are likely to contribute to participants’ choices.510

Learning speed Another limitation of the model is the gap between the learning speed of511

human participants and the learning speed of the model. Overall, humans learned considerably512

faster than the model, even with a large learning-rate. On average participants exhibited a513

bias as soon as the 3rd episode, which is faster than the theoretical limit possible for the TD(0)514

model in this task. While some of this discrepancy can be attributed to the model’s reliance on515

1-step backups, it is noteworthy that even in comparison with TD(λ), humans’ learning is faster516

than the that of the model. The rapid learning in humans suggest mechanisms that go beyond517

simple model-free learning as implemented in our models. In our model, the fact that “right”518

is favorable can only be learned implicitly, by actually visiting more unique states following519

MR (compared to ML). This is because the only information that is available to the agent is520

the identity of states and actions, but the number of available actions was not included as an521

explicit feature in the state representation available for the agent. By contrast, a single visit of522
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bothMR anML is likely sufficient for humans to learn that the number of doors inMR is larger523

than in ML, a fact which can by itself bias their following choices in favor of “right”. Indeed524

by using this (possibly salient) feature, of the number of doors, as an explicit part of the state525

representation, one could infer thatMR is more favorable overML already after 2 episodes even526

with model-free learning. While such strategy is not as general as the computational principles527

encapsulated by our models, in the specific task at hand it will be rather effective. The ability528

of humans to rapidly form and utilize such heuristics and generalizations is likely an important529

part of their ability to rapidly adapt and learn in novel situations. The interplay between basic,530

more general-purpose, computational principles, and heuristic, more ad-hoc, principles remains531

an important challenge for computational modeling in the cognitive sciences.532

Generalization, priors, and “natural” exploration The goal of this study was to identify533

computational principles underlying exploration in a “general” setting. To that goal, we used a534

task in which the semantic content attached to states was minimal, with no a-priori indication535

of any structure (temporal, geometric, spatial, etc.) of the state-space. The motivation behind536

this design was to de-emphasize, as much as possible, behavior components stemming from par-537

ticipants’ prior knowledge and generalization abilities, and focus on core exploratory strategies.538

This also justified the models that we used: general-purpose, simplistic, learning models that539

operate on an abstract notion of states and actions. On the other hand, the abstract design of540

the task limits its applicability to more realistic tasks and natural behavior. Indeed in complex541

environments, it has been demonstrated that humans rely largely on both priors and generaliza-542

tions to achieve efficient learning and exploration (Dubey et al., 2018; Schulz et al., 2020). How543

such priors, semantic knowledge, and generalization interact with more abstract and general544

principles of exploration and decision-making is an important open question. Notably, we have545

found that humans are capable of performing directed exploration of complex environments546

even in the absence of a readily-available semantic structure to guide their exploration. This is547

in contrast to the recent work of Brändle et al. (2022), that demonstrated directed exploration548

(interpreted as driven by the information-theoretic quantity of empowerment) in complex en-549

vironments with available semantic structure, that was not observed in a structurally identical550

task where the semantic structure has been masked.551

The role of computational models in studying human exploration The E-values552

model(s) are inconsistent with some important features of human behavior, most notably (as553

mentioned before) learning speed. We therefore believe that an attempt to fit the model554

parameters using the collected data is misleading. This, however, does not imply that the model555

is useless. We view the role of our theoretical model as a mathematical, algorithmic (and hence,556

concrete) manifestation of the psychological principles (which are inevitably more vague and557

open to interpretation) that we hypothesized to be underlying human exploration. As such, the558

model is viewed as a theory that can qualitatively reproduces key aspects of human behavior559

in this task, from a set of minimal, well-understood, and theoretically justified, computational560

principles. The failure modes of the model are just as informative, as they provide insight into561

aspects of human behavior that cannot be explained by these principles alone, at least in a562

generic manifestation.563
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Methods564

Online experiments and data collection565

The study was approved by the Hebrew University Committee for the Use of Human Sub-566

jects in Research. Participants were recruited using the Amazon MechanicalTurk online plat-567

form, and were randomly assigned to one of the conditions in each experiment. Participants568

were instructed to “understand how the rooms are connected”, and were informed regarding569

the test phase: “At the end of the task, a test will check how quickly can you get from570

one specific room to a different one.”. The training phase of the experiment consisted of571

120 trials, corresponding to 20 episodes. Between 20% to 30% of participants (depending572

on the experiment and condition) performed a longer experiment of 250 trials corresponding573

to 42 episodes, but for these participants only the first 20 episodes were analyzed. The end574

of each episode (reaching the terminal state T ) was signaled by a message screen (“Youv’e575

reached a dead-end room, and will be moved back to the first room”). After the training576

episodes, there was a test phase in which participants were asked to navigate to a target577

room in the minimal number of steps possible, starting from a particular start room (which578

was not the initial state S). An online working copy of the experiment can be accessed at:579

https://decision-making-lab.com/lf/eee_rep/Instructions.php .580

For each participant, we recorded the sequence of visited rooms (states) and chosen doors (ac-581

tions), in the train and test phases. No other details (including demographics details, question-582

naire, or comments about the experiment) were collected from participants. Test performance583

was used as a criterion for filtering. Out of the total participants who finished the experiment584

(i.e., finished both training and test phases), we rejected those who did not finish the test585

phase in a number of steps smaller than expected by chance (e.g., the expected number of586

steps it would take to reach the target by random walk). We also rejected participants who,587

during training, did not choose both “right” and “left” at least twice. The test start and target588

rooms were identical for all participants, and were chosen as to maximize the difference between589

performance (i.e., number of steps) expected by chance to that of the optimal (shortest path)590

policy. The number of participants in each experiment is given in Table 1, and their division591

into “Good” and “Poor” explorers is given in Table 2.592

Exp. Env. Completed Included

1
3 : 4 191 161
2 : 5 174 120
1 : 6 176 137

2
d = 1 244 191
d = 2 269 205
d = 3 282 238

Table 1: Number of participants in Experiments 1 and 2.
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Exp. Env. “good” explorers “poor” explorers

1
3 : 4 66 95
2 : 5 53 67
1 : 6 71 66

2
d = 1 92 99
d = 2 84 121
d = 3 85 153

Table 2: Participant groups in Experiments 1 and 2

Estimating policy from behavior593

For the average results, we computed for each participant their pR value as the number of594

“right” choices divided by the total (and fixed) number of visits to S. Similarly, prepeat was595

calculated for individual participants as the number of visits to MR in which the chosen action596

was identical to the one chosen in their previous visit of MR, divided by the total visits of MR597

minus one. Note that the total number of visits to MR was different for different participants,598

as it depended on their policy at S. We have used the same measurements for the results of599

the model simulations for consistency. Note that, in principle, the model allows to measure the600

policy of individual agents (at individual time-points) directly, without the need to estimate it601

from behavior (i.e., the generated stochastic choices). To estimate learning dynamics, we can602

no longer estimate pR (t) on an individual level, because each participant only made one binary603

choice at a given episode. Therefore, we computed pR (t) at the population level, as the number604

of participants who chose “right” in the tth episode divided by the total number of participants605

(possibly within a particular group, for example only “good” explorers). Alternatively, when606

considering specific experimental conditions, we have estimated pR (t) for individual participants607

using a moving-average over a window of 3 consecutive episodes.608

Statistical analysis609

Confidence Intervals (CI) for pR were computed using bootstrapping, by resampling participants610

and choices. Comparisons between different conditions were computed using a permutation611

test, by shuffling all participants of the two groups being compared, and resampling under the612

null hypothesis of no group difference. With this resampling we computed the distribution of613

pR (A) − pR (B) for two random shuffled groups of participants A and B. Reported p-value is614

the CDF of this distribution evaluated at the real (unshuffled) groups.615

TD (λ) learning for E-values616

We start by proving a short, non-technical description of the TD and TD (λ) value-learning617

algorithms. The value of a state-action (denoted Q (s, a)), is defined as the expected sum of618

(discounted) rewards achieved following that state-action. The goal of the algorithms is to619

learn these values. To that end, the agent maintains and updates estimates Q̂ (s, a) of the620

true state-action values Q (s, a). In TD-learning, Upon observing a transition (s, a, r, s′, a′), the621

estimated value (Q̂ (s, a)) is updated towards r + γQ̂ (s′, a′). Crucially, Q̂ (s′, a′) is also, on its622

own, an estimated value. This usage of (a part of) the current estimator to form the target623
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Algorithm 1 TD (λ) learning for E-values
Require: Parameters η, λ, γ
Initialize E (s, a) = 1 for all s, a
for all episodes do

set ε (s, a) = 0 for all s, a . eligibility-traces
set τ = {} . trajectory in this episode
set s to the initial state and choose action a
while s is not a terminal state do

sample the next state and action s′, a′
increment ε (s, a)← ε (s, a) + 1, and concatenate (s, a) to τ
for all (st, at) in τ do

E (st, at)← E (st, at) + ηε (st, at) (γE (s′, a′)− E (s, a)) . update E-value
ε (st, at)← γλε (st, at) . decay eligibility-trace

end for
s← s′, a← a′

end while
E (s, a)← (1− η)E (s, a) . update in terminal-state

end for

for updating the same estimator is known as bootstrapping. TD learning therefore breaks the624

estimation of value – the sum of rewards – into two parts: the first reward, which is taken from625

the environment, and the rest of the sum, which is bootstrapped.626

It is possible, however, to estimate the values while breaking the sum of rewards in other ways.627

For example one could sum the first two rewards based on observations, and bootstrap the rest,628

that is, from time-step 3 on-wards. Importantly, this would result in information (about the629

rewards) propagating backwards 2-steps in a single update, rather than 1-step. More generally,630

breaking the sum after n steps will result in an n-step backup learning rule. It is also possible631

to average multiple n-step backups in a single update. The TD (λ) algorithm is a particular632

popular scheme to do that: it can be understood as combining all possible n-step backups,633

with a weighting function that decays exponentially with n (i.e., the weight given to the n-step634

backup is λn−1, where λ is a parameter). With λ = 0 the algorithm recovers the standard635

1-step backup algorithm, or in other words, TD (0) is simply TD. A value of λ = 1 corresponds636

to no bootstrapping at all, relying instead on Monte Carlo estimates of the action value by637

collecting direct samples (sum of rewards over complete trajectories).2638

Equation 1 can be understood as a TD algorithm (specifically, using the sarsa algorithm639

(Rummery and Niranjan, 1994; Sutton and Barto, 2018)) in the particular case that all the640

rewards signals are assumed to be r = 0, and estimates are initialized at 1. The extended model641

(Algorithm 1) is a direct generalization of that correspondence to the TD (λ) case.642
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Figure S1: Simulations results of TD (λ). Simulating behavior of the E-values model with the TD (λ)
learning rule (Methods, Algorithm 1) reproduces the main findings of directed exploration in the maze task.
(a) In MR, the model exhibits directed exploration which manifests in low values of prepeat (shown for the 3
conditions of Experiment 1; dashed line denote chance-level expected for random exploration, 1/nR) (b) In the
environments of Experiment 1, agents exhibited bias towards MR that increased with imbalance of nR : nL,
reflecting the propagation of long-term uncertainties over states. (c) In the environments of Experiment 2, the
bias decreased with depth, reflecting temporal discounting. (d) Bias towards MR peaks transiently, followed
by a decay to baseline at steady-state, as expected from uncertainty-driven exploration (average results over all
6 environments). The learning dynamics is faster than that of the 1-step update model. Results are based on
3,000 simulations in each environment. Bars and histograms in (a)-(c) are shown for the first 20 episodes to
match the behavioral experiments. Model parameters: η = 0.9, β = 5, γ = 0.6, λ = 0.6.
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Figure S2: Model parameters. Learning curves of the TD (λ) model in the 3 environments of Experiment 2
for different values of γ,λ (with fixed η = 0.9, β = 5). With infinite discounting (γ = 0), future consequences
are neglected, resulting in a uniform (counter-based like) policy with no bias. With no discounting (γ = 1),
information from the terminal state T dominates, resulting in a bias towards “right” (since there are more routes
to the terminal states via the “right” branch) that is not dependent of the depth ofMR. For intermediate values
of γ, transient exploration opportunities (i.e., in MR) becomes important, resulting in a bias towards MR that
decreases with depth, reflecting temporal-discounting. In this regime, one-step backup learning rule (λ = 0)
results in difference learning speed for different depths, while for trajectory-based learning rules (λ > 0) learning
speed is comparable for the different depths. Each learning curve is the average of 30, 000 simulations.
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Chapter 5

Discussion

ועמֺק שהיה מה רחוק

ימצאנו מי עמֺק

ז קהלת

This thesis has focused on the unique challenges of exploration in complex, structured,
environments. A particular emphasis was given to the fact that in such environments,
the long-term exploratory consequences of actions matter, and should be taken into
account – from an algorithmic-theoretical perspective, and from a behavioral perspec-
tive alike. To do that, there is a need for both appropriate models and experimental
paradigms, as well as the conceptual way to connect between them.

The theoretical framework that we have used for approaching these questions here is
Reinforcement Learning (RL), with a particular (though not exclusive) focus onmodel-
free RL. Model-free methods are conceptually simple, can be relatively easily scaled
to large domains, and have long been used as a minimal model of operant learning in
the behavioral sciences. Here, we have shown that model-free methods can also be
pushed quite far in the context of exploratory tasks. Specifically, they can be used to
form useful measures of uncertainty for directed exploration in complex environments
(Chapter 2), as well as learn and generate non-trivial exploratory behaviors in the com-
plete absence of external rewards (Chapter 3). Even more so, they provide successful
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predictions for human behavior in structured exploration tasks (Chapter 4).

Yet, model-free methods are by no means the end of the story. From an algorithmic
perspective, model-free methods can be slow, and suffer from large sample complex-
ity. One potential reason for that is that a model-free algorithm only uses reward
observations for learning, which are typically sparser, and of a much lower dimen-
sion, compared to state observations which are used for model-based learning (Recht,
2019). Moreover, they are inherently limited in their generalization ability, for ex-
ample when the reward structure changes but the environmental dynamics remain
unchanged (Dayan, 1993). Building artificial agents that can learn abstract or “latent”
models directly from sensory observations, and use them for planning and reasoning,
remains a frontier topic in RL and Artificial Intelligence in general (Ha and Schmidhu-
ber, 2018; Hafner et al., 2019; Moerland et al., 2020; LeCun, 2022).

From a cognitive perspective, simple model-free methods are also an incomplete de-
scription of learning and behavior. Indeed, the fact that animals can generalize and
plan based on their prior experience has historically been an important argument for
the existence of structured mental representations such as cognitive maps (Tolman,
1948), and today it is well established that RL in humans involves model-based com-
ponents (Daw et al., 2011). Recent studies further demonstrated the importance of
model-based techniques in accounting for some aspects of human exploration in com-
plex environments, beyond the bandit task (Xu et al., 2021; Brändle et al., 2022). It is
worthmentioning that the general question of model-based versusmodel-free learning
is tightly related to the question of behavior in complex environments. This because
in a bandit task, the two alternatives cannot – in principle – be differentiated, as there
is no “model” of the environment to be learned, other than the rewards model. In the
context of this work, while model-free methods have proved a useful description of hu-
man learning and exploration in complex environments, we interpret the shortcoming
of the model in explaining the rapid learning observed in humans as a strong indi-
cation for mechanisms beyond pure model-free learning (see more in the discussion
section of Chapter 4). Overall, characterizing the role that planning, and model-based
techniques in general, play in human exploration remains an important open topic for
future research.

While we have focused on studying exploration at the behavioral level, the theoretical
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and experimental frameworks developed in this thesis could further inform the study
of the neural basis of exploratory behavior. This, in fact, might be another advantage
of the model-free methods: their conceptual simplicity makes is easier to identify po-
tential neural signatures of their implementation. The ever-increasing development of
experimental technology in neuroscience, which enables the recording of neural activ-
ity in behaving animals and in complex environments (simulated or physical), opens
up new possibilities and opportunities for novel RL theory to inform studies of richer
behaviors than reward maximization alone.

The analogy between reward and “information” (in the broader sense of the term) has
been a recurring theme in this work. It has informed us on multiple levels: from the
conceptual overall problems (of “learning to explore”, and even “planning to explore”),
through the intermediate building blocks (such as specific objective functions, tempo-
ral discounting), to the tools and techniques that can be used (various model-free RL
algorithms, including both value-based and policy-gradient approaches). Recent stud-
ies have further established this analogy more formally, for other behavioral objectives
beyond exploration (Zhang et al., 2020; Zahavy et al., 2021). But despite the usefulness
of this analogy, there are important differences between the problem of learning to
maximize reward and learning to explore. Perhaps most notably are the two issues of
stationarity and ergodicity.

Exploration is inherently non-stationary in the sense that it is often interpreted as part
of a learning process. This poses a technical limitation of applying standard RL algo-
rithms – which often assume a stationary, Markovian environments and rewards – to
the “learning to explore” problem. We have approached this issue from two comple-
mentary angles. First, the E-values method (Chapter 2) relies on tracking the Temporal
Differences learning dynamics itself, without positing an actual “exploration reward”.
This results, technically, in a stationary target for the exploration learning, but comes
at the cost that the steady-state values are trivial (in the sense that they are not sen-
sitive to the environmental structure). The maximum-entropy approach (Chapter 3),
on the other hand, is driven by a stationary objective which will generate a non-trivial
steady-state behavior, but this comes at the expense that learning has to track a non-
stationary (and in some sense non-Markov) “reward” targets.

This non-stationarity is the main reason for our choice of Policy Gradient methods
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to learn the optimal exploration policy, as these methods are somewhat more toler-
ant to violations of the standard MDP assumptions compared to Value-based methods
(Shalev-Shwartz et al., 2016). Indeed, related approaches that build on Policy Gradient
have more recently been proposed by several authors (Zhang et al., 2020; Mutti et al.,
2021; Zhang et al., 2021). Continually optimizing the policy (against a changing “re-
ward” function) can be seen as an alternative to related methods in which the complete
solving of a progression of different MDPs, each with a different (stationary) reward
function, is required (Hazan et al., 2019; Lee et al., 2019; Zahavy et al., 2021). Over-
all, the usefulness of standard RL techniques in solving problems beyond the classical
expected reward maximization raises the question of whether value-based techniques
can also be applied for that purpose. As of writing these lines, this question remains
largely open (though see Geist et al., 2022).

Another, somewhat related, difference between the “standard” reward maximization
and non-standard objectives (such as the maximum-entropy exploration) is in the very
nature of optimality they imply. In virtually all cases – for both reward-maximization
and “non-standard” objectives – the optimization objective is defined in terms of the
visitation distribution (over state-actions) induced by the policy. As such, the objec-
tive is some measure F of the expected behavior, where the “expected behavior” is over
the ensemble average of many trajectories. In the standard RL case, the measure F is
a linear functional, and therefore (due to the linearity of expectation) the problem is
mathematically equivalent to the expectation of the measure F of the behavior. This,
however, no longer holds in the “non-standard” case, for example where F is the en-
tropy functional. In that case, the single-trajectory performance can be, even in ex-
pectation, far from optimal. For example, single trajectories generated by the optimal
exploration policy (in the sense of Chapter 3) do not well-cover the entire state space
of the MDP – it is only the statistical ensemble of trajectories that does.

This formalism is mathematically convenient, as it makes the optimization problem
tractable, particularly in guaranteeing that an optimal solution can be realized by a
fully reactive, Markovian policy (i.e., a memoryless policy that only depends on the
current state). By contrast, requiring optimality on the single-trajectory level is much
more demanding, and reactive Markovian policies are strictly suboptimal in that case
compared to non-Markovian policies (Mutti et al., 2022). From the perspective of hu-
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man (and animal) behavior, this gap is a potential concern, as it is unclear that such
“optimality by ensemble” (as opposed to “optimality on a single expected episode”) is
behaviorally relevant. Indeed, similar issues have been recognized in the broader con-
text of economical decision making (Peters, 2019). This gap suggests that notions of
optimality that do not rely as heavily on Markovian assumptions, in contrast to those
commonly used in RL, might be an important extension for the study of exploration.
For example, theories of optimal foraging which incorporate the idea of diminishing
returns and rely on the Marginal Value Theorem (Charnov, 1976) might better account
for some aspects of natural “exploration” compared to standard RL models (Kolling
and Akam, 2017).
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Consider a wildlife photographer that has just entered a

rainforest that she has never visited. Looking for a good spot for

animal photos, she can spend all her time in the first hideout

that she found, slowly learning which animals visit that spot.

Alternatively, she can consider other locations, which are

potentially better but might also be worse. To identify these

better locations she needs to leave her hideout and walk further

into the forest, thus missing the opportunity to learn more about

the qualities of her first hideout. How should she explore the

forest? How does she explore it? Here we describe the

computational principles and algorithms underlying exploration

in the field of Machine Learning and discuss their relevance to

human behavior.
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“ . . . As she gazed, she sniffed and sighed. ‘The

sea is deep and the world is wide! How I long to

sail!’ Said the tiny snail.”

— Julia Donaldson, The Snail and The Whale [1]

Introduction
Whether it is a wildlife photographer in a forest, looking

for a good spot for animal photos or a rat in a subway

station looking for food and shelter, exploring one’s

environment is an essential component of Reinforcement

Learning (RL). In Machine Learning (ML), exploration

is typically studied in the framework of Markov Decision

Processes (MDPs) [2,3]. MDPs are characterized by

states and actions. Taking an action in a specific state

can result in a transition of the agent to a different state

and the delivery of a reward, with fixed probabilities. The

Markov property dictates that given its current state and

action, the transition to the next state and the delivery of

reward are independent of the agent’s history of states,

actions and rewards. Considering the photographer exam-

ple, she is rewarded for taking good pictures of animals,

whose probabilities depend on her current location

(state). At every time point, she must decide which action

to take, whether to take a photo, or to execute a different

action, for example, to walk or to climb a tree, which will

result in a change of her location. The goal of the agent in

an MDP is to maximize the expected cumulative rewards

(often with some discounting of future rewards). If the

MDP is fully known, there exist efficient algorithms that

can guide the agent to select, in each state, the optimal

action with respect to its goal [2]. However, when the

MDP is unknown, the agent must learn the optimal

mapping from states to actions (‘policy’) by interacting

with the environment. This learning requires exploration,

and how to explore well is an active topic of research in

ML.

Random exploration
To learn about the consequences of the different actions

in the different states, all of the actions in all of the states

must be taken. If the MDP is stochastic, they must be

taken many times (in fact, infinitely many times). This

can be achieved by choosing actions at random. However,

this approach will not only perform poorly with respect to

reward accumulation, learning this way will, in practice,

be highly inefficient. This is because such exploration

does not utilize the knowledge that has already been

gained about the environment. Specifically, a photogra-

pher that has already identified several potentially good

photo locations should give more attention to those spots,

rather than explore spots that have previously proven to

be lean. A standard solution to this problem is to utilize an

estimate of the cumulative rewards following each action

in each state, a quantity known as ‘action-value’, and to

select with a higher probability actions which are associ-

ated with a higher action-value. This results in explora-

tion that is still random, but is no longer uniform. Rather,

it is biased in favor of actions which are deemed better.

The most standard application of this approach in ML is

known as ‘e-greedy’ (Figure 1a): with high probability

(1 � e), the agent selects the alternative deemed best
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with respect to rewards (greedy). With a low probability

(e), the agent explores by randomly selecting another

action. Exploration this way, however, does not distin-

guish between the non-greedy alternative actions. There-

fore, a more graded approach, in which alternative actions

that are deemed better are chosen with a higher proba-

bility is often used. Typically, this is achieved using a

‘softmax’ function (Figure 1b), which can be justified as

resulting from constraints on the entropy of the policy [4].

Finally, in Thompson sampling (Figure 1c) the posterior

distributions over action-values are estimated, and actions

are chosen by randomly sampling from these distributions

and greedily choosing with respect to these random

samples [5]. This allows for stochasticity, whose magni-

tude decreases with the certainty in the estimation of the

action-values.

Directed exploration
The goal of exploration is to gain new knowledge. There-

fore, exploration should ideally be directed towards

actions that are more useful in that respect [6,7]. Choosing

an action randomly, or according to its action-value is not

efficient in that perspective. Rather, an agent can more

efficiently explore if it tracks its own past behavior and

chooses actions according to their predicted exploratory

value. Methods that preferentially choose more uncertain

options are termed ‘directed exploration’. A simple way of

keeping track of how ‘well-explored’ a particular action is,

is to use visit counters (Figure 2a). For each action and

state, count how many times this action has been selected

(in the given state) and prioritize actions that were

previously selected less often [8–10]. In recent years,

the concept of visit counters has been extended in several

ways. Most notably, there are (a) techniques to apply

counter-based methods in large or continuous problems

(in which it is unfeasible, or not helpful, to actually ‘count’

visits of individual states) [11�,12,13,14�]; and (b) the

introduction of generalized counters (Figure 2b), used to

evaluate the long-term exploratory consequences of

actions, beyond the immediate, one-step-ahead informa-

tion represented by standard visit counters [14�,15].

Tracking its own learning process can also inform the

agent about gaps in its knowledge about the world. A

surprising outcome of an action in a particular state

(relative to what the agent has predicted based on its

past experience) is an indication of missing knowledge

that should drive exploratory choices in that direction. For

example, in many algorithms, the reward prediction error, a

measure of the surprise (with respect to reward)
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Random exploration strategies in the 2-armed bandit task.

(a) e-greedy: the alternative associated with the larger action-value (q) is chosen with probability (1�e) and that associated with the smaller action-

value is chosen with probability e, independently of its action-value (compare top and bottom). (b) Softmax: the probability of choice is

proportional to the (scaled) exponentiated action-value. As a result, the probability of choice depends on the specific action-values, and not only

their ranking (compare top and bottom). (c) Thompson sampling: rather than using point estimates of the action-values, the agent estimates the

action-values using probability distributions. In each trial, the agent samples an action-value from each distribution and greedily chooses the

action associated with the largest sampled action-value. As a result, the probability of choice depends not only on the mean of the distribution but

also on its higher moments. Specifically, in this example, an action associated with a smaller mean action-value may be chosen more often than

one with a larger action-value if the variance over its distribution is larger (compare action ’Left’ in Top and Bottom). Estimated actions-values q

((a) and (b)) and their distributions are presented in the rounded rectangles. Black bars’ length depict the probabilities of choice of the

corresponding actions. Top and Bottom panels portray different action-values.
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associated with the outcome of an action, is used to

update the estimated value of the chosen action. This

prediction error can also serve as a signal for guiding

exploration (Figure 2c). This is because actions associated

with high prediction error (in absolute value) are ones for

which learning has probably not converged yet and thus

requires further exploration [16,17]. The same logic can

be applied to prediction errors arising in learning of

quantities other than the expected reward, such as the

prediction error for the next state given the current state

and action [18]. Surprisingly, it turns out that even pre-

diction errors arising from learning a fixed, random func-

tion, can be sufficient for successfully guiding effective

exploration [19]. Other methods to quantify and utilize

surprise use information-theoretic quantities such as

information gain to guide exploration [20–22]. Finally, a

popular method for exploration is known as optimism in the
face of uncertainty [23,24]. The idea is to optimistically

initialize the estimated action-values in the learning

process (Figure 2d). If exploration is directed in favor

of actions that seem more valuable then by construction,

those actions less visited will be favored.

These different methods for directed exploration can be

incorporated in the process of learning in various ways. An

exploration bonus that is based on one of the principles

outlined above can be added to the reward, such that

reward-seeking will result also in exploration [9,11�,19].
Alternatively, action-selection can directly incorporate a

term that favors exploration [8,14�]. Finally, these differ-

ent principles can be combined. For example, optimism

in the face of uncertainty can be combined with measures

of uncertainty or missing knowledge such as counters. An

agent can adopt an optimistic belief for actions which

have not been explored enough yet, and trust its unbiased

estimate for actions which have been explored

106 Curiosity (Explore versus exploit)
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Directed exploration.

In directed exploration, actions associated with more uncertainty are chosen more often. Here we describe a few methods for directed

exploration. (a) Counters: choices are biased in favor of actions that were previously chosen less often. (b) Generalized counters: choices are also

biased in favor of actions that are likely to lead to other actions that were previously chosen less often. (c) Surprise: choices are also biased in

favor of actions that yielded surprising results. The magnitude of the reward prediction error is one way of measuring ’surprise’. In this example,

choice is biased in favor of the action associated with the larger magnitude reward prediction error, despite it being negative. (d) Optimism:

action-values’ estimates are initialized using a large number. As a result, a greedy choice would initially favor those actions that were previously

chosen less often. Estimated actions-values q, visit counters c and prediction errors Dqt are presented in the rounded rectangles. Black bars’

length depict the probabilities of choice of the corresponding actions.
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sufficiently many times. This approach underlies several

algorithms that are theoretically guaranteed to efficiently

explore [25,26].

Studying exploration in humans using the
bandit task
A most popular paradigm used to uncover the computa-

tional principles underlying exploration in humans is the

bandit task (see for example Refs. [27�,28,29]). A partici-

pant is instructed to repeatedly choose between k alter-

natives (often, k = 2), that are characterized by different

reward-distributions. To uncover exploration in this task,

it is assumed that the participant has estimated the action-

values associated with the different actions and that her

overall objective is to maximize cumulative rewards. An

action that is associated with the largest action-value is

interpreted as reflecting the exploitation of the already-

obtained information, while any deviation from such

greedy behavior is interpreted as reflecting exploration,

whose goal is to add information about the other action-

values. The mapping from action-values to choices has

been measured non-parametrically, revealing that

humans utilize an action-selection function that combines

e-greedy and softmax functions [30�]. Later studies have

revealed that the magnitude of exploration depends on its

usefulness. Specifically, in a ‘horizon task’, in which the

number of remaining trials is large, participants tend to

explore more compared to tasks in which a single trial

remains [31,32].

Several studies have shown that in addition to random

exploration, uncertainty also directs human exploration

[27�,29,33–35]. Developmental [36], genetic [37,38],

imaging [39], pharmacological [40] and transcranial mag-

netic stimulation [41] studies suggest that anatomically

distinct cognitive modules underlie random and directed

explorations. Indeed, directed, but not random explora-

tion is correlated with the extent to which participants

care about future rewards (their temporal discounting

function [32]). Similarly, frequent gamblers exhibit a

specific reduction in directed exploration, but not in

random exploration [42].

By construction, the bandit task cannot address a funda-

mental aspect of exploration — the long-term exploratory

consequences of actions. For example, the photographer

may choose to climb down a tree not because she is

interested in photos associated with the climb, but

because she is interested in moving to a different location

in the forest. Studying this kind of exploration requires

more complex experimental designs (see also below) [43].

Challenges in identifying human exploration in
the bandit task
To relate participants choices to exploration, researchers

typically estimate the action-values utilized by the parti-

cipants (Figure 3a). This procedure implicitly postulates

that participants indeed compute and utilize action-

values in their learning behavior. However, there is no

guarantee that this is indeed the case [44]. In fact, several

operant learning algorithms that are devoid of any explicit

or even implicit representation of action-values (e.g.

based on policy gradient) (Figure 3b) explain behavior

well in bandit-like tasks [45–47]. It is not even clear how

to define exploratory behavior in the absence of value

representation, as it can no longer be related to choosing

lower-valued options. One may be tempted to identify

stochastic choice with exploration. However, while the

existence of an optimal deterministic policy is guaranteed

in fully observable MDPs, this is not the case when

considering reactive policies in the more realistic partially

observable MDPs (POMDPs) [48,49]. On the other hand,

some exploration algorithms are fully deterministic [14�].

Moreover, in the framework of action-value estimation in

the bandit task, it is typically assumed that the partici-

pants estimate action-values as if they are in a one-state

MDP. However, it is well known that humans ’detect’

temporal structures even in random sequences [50,51].

This result suggests that participants are likely to utilize a

more sophisticated model than a one-state MDP when

tested in the bandit task (Figure 3c) [45,46]. Indeed,

given the same sequence of outcomes, participants’

behavior critically depends on whether they fully under-

stand the stochastic mechanism that maps actions to

rewards [52�]. The one-state MDP assumption is further

challenged by the fact that in some tasks participants’

behavior is consistent with the belief that they operate in

a non-observable MDP (a POMDP with just one obser-

vation) [49]. Indeed, in many bandit experiments, the

task is not a one-state MDP and the (unknown) reward

probabilities change throughout the task. A recent study

has demonstrated the difficulty in identifying exploratory

behavior in the framework of action-value learning.

Studying choices in a bandit task, it was shown that

the majority of non-greedy decisions is due to limited

computational precision rather than reflecting human

exploration [53�] (Figure 3d).

Finally, the challenge of identifying the model underly-

ing behavior is not unique to exploration. In general, the

internal models participants employ are underdeter-

mined by their behavior [54]. To deal with this issue,

models are compared and their parameters are estimated

using methods such as maximum-likelihood. However,

despite substantial progress, a comprehensive under-

standing of human behavior in the bandit task is still

lacking [55].

Ecological exploration
The k-armed bandit task is relatively easy to model and to

relate to the general-purpose ML algorithms described

above. However, it does not take into account an essential

aspect of human learning and exploration — prior
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knowledge about the structure of the MDP. Let us

reconsider the photographer example. The photographer

enters the forest, which she has never visited with exten-

sive knowledge about it. For example, she knows that if

she moves left — she will find herself to the left of her

previous state. She knows that if she climbs up a tree, she

will need to climb it down in order to move to a different

location in the forest (unless she is Tarzan). These trivial

facts, which will dominate the photographer’s exploratory

behavior, are typically lacking from the standard ML

algorithms, which were constructed to learn general

MDPs. The dependence of human learning (but not of

machine learning) on such priors has been demonstrated

in an experiment that compared computer-game learning

of humans and machines. Humans learned the game

much faster than machines. However, their learning

ability substantially deteriorated when objects (ladders

for climbing, demons as game-ending enemies) were

masked by re-rendering their pixels. By contrast, the

ML algorithm was insensitive to this manipulation

[56]. Another study demonstrated that participants utilize

spatial cues when learning in a bandit task with a large

number of possible actions [57]. Even infants, the ulti-

mate candidates to be considered as tabula-rasa agents,

have expectations of their environment and insights on its

structure [58,59]. It has been argued that the artificial

environments that are utilized in lab experiments are too

different from ecological-relevant exploration. As a result,

the relevance of the resultant conclusions to natural

behavior is questionable [60]. This lacuna can be

addressed by utilizing more ecologically valid experimen-

tal paradigms [33,43].

Exploration has also been studied in the context of

foraging, which is perhaps ecologically more relevant than

the bandit task [61,62]. The foraging decision is whether

to exploit a current option or explore, looking for a better

one. The experimental design can be similar to that of the

bandit task, but the magnitude or probability of reward

diminishes with the number of times that the alternative

was chosen. Foraging is typically analyzed in the frame-

work of the Marginal Value Theorem [63], which

describes the strategy that maximizes the cumulative

rewards when returns decrease with time spent exploiting

an option. This is because a general MDP that does not

take into account prior knowledge about the diminishing

nature of returns does not seem relevant to human

behavior. This poses a challenge when attempting to

relate contemporary machine-learning exploration algo-

rithms to behavior in these foraging tasks [61].

Finally, people tend to overestimate the probability of

positive outcomes, and underestimate that of negative

outcomes, a phenomenon known as ‘optimism bias’ [64].

This could reflect a biased prior knowledge about the

world. To the best of our knowledge this bias has not been

directly linked to human exploration. It would be inter-

esting to test whether it contributes to human exploration
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Repertoire of possible mental models.

It is difficult to identify exploration because the participant may utilize (unknown) different models when learning in the two-armed bandit task. (a)

The participant (smiley) may assume that the world is a one-state (S0) MDP (Top), learn the two action-values (gold bars) and choose between the

two actions (arrows) using a softmax function (Bottom). This is the model researchers typically use to quantify behavior. (b) However, the

participant may utilize a very different learning model. For example, the participant may learn the policy directly, without estimating action-values.

In this case, it is not even clear how to define exploration. (c) The participant may assume an MDP that is more complex than the true one. She

may also use a different action-selection function. (d) Finally, noise in the action-values’ estimation may be erroneously interpreted as

‘exploration’. This could lead to an underestimation of the slope of the action-selection function. Each model is described in one column, where

the top panel depicts the learning and the bottom panel the action-selection. Gold bars, ship, reading person and scientist are adapted from Ref.

[75].
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in a similar way that ’optimism in the face of uncertainty’

contributes to exploration in ML.

Exploration and curiosity
Broadly speaking, curiosity is often defined as the desire

for information [65–67]. In the framework of RL, curiosity

has been traditionally related to exploration, either by

using exploration as a measurement for curiosity

[35,68,69], or by considering a (model of) curiosity as a

form of an exploratory drive [7,18,20]. While curiosity in

general, as well as other ‘intrinsic’ drives, might be

broader than the notion of exploration in RL contexts

[70,71], some hypotheses about curiosity can be directly

formulated in the language of RL, and particularly explo-

ration strategies [72]. For example, one theory states that

novel objects create more curiosity [69] while another

theory states that people are more curious about informa-

tion gaps - specific cases of high uncertainty [73,74]. The

first theory is in line with ‘visit counters’ exploration

(Figure 2a), while the second is in line with exploration

that is motivated by prediction-error or information-gain

(Figure 2c).

Concluding remarks
Substantial progress has been made in recent years in the

development of algorithms for efficient exploration, and

in understanding the computational principles underlying

human exploration. While bandit tasks have been pivotal

for understanding many aspects of the computational

principles underlying exploratory behavior, they failed

to capture what we view as the major difference between

human and machine exploration — the extensive use of

prior knowledge in human learning. In machine learning,

this prior knowledge is implicitly embedded in the spe-

cific hypothesis classes used for function approximation.

This prior knowledge, however, is very different from

that utilized by humans, as described above. One excep-

tion may be the weight sharing and local connectivity in

convolutional neural networks, where prior knowledge

about the homogeneity of low-level statistical dependen-

cies in natural images is implemented in the structure and

learning of the network. The difference between humans

and machines may be easy to miss in bandit tasks, but it is

easily seen in more ecological tasks that have a complex

structure [43,61]. Such tasks will not only allow us to more

fully understand human behavior, their focus on prior

knowledge can aid us in creating ML algorithms that

better solve real-life problems.

Conflict of interest statement
Nothing declared.

Funding
This work was supported by the Israel Science Founda-

tion (Grants 757/16 and 3213/19), and by the Gatsby

Charitable Foundation. Lotem Elber-Dorozko is grateful

to the Azrieli Foundation for the award of an Azrieli

Fellowship and Ohad Dan would like to acknowledge

the support of the The Hoffman Leadership and Respon-

sibility Fellowship Program.

Acknowledgement
We thank Gianluigi Mongillo for carefully reading the manuscript and for
his helpful comments.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest

1. Donaldson J: The Snail and the Whale. Puffin Books; 2006.

2. Sutton RS, Barto AG: Reinforcement Learning: An Introduction.
MIT Press; 1998.

3. Kaelbling LP, Littman ML, Moore AW: Reinforcement learning: a
survey. J Artif Intell Res 1996, 4:237-285.

4. Achbany Y, Fouss F, Yen L, Pirotte A, Saerens M: Tuning
continual exploration in reinforcement learning: an optimality
property of the Boltzmann strategy. Neurocomputing 2008,
71:2507-2520.

5. Russo DJ, Van Roy B, Kazerouni A, Osband I, Wen Z: A tutorial on
Thompson sampling. Found Trends Mach Learn 2018, 11:1-96.

6. Thrun SB: Efficient Exploration in Reinforcement Learning. 1992.

7. Schmidhuber J: Curious model-building control systems.
Proceedings of the IEEE International Joint Conference on Neural
Networks 1991:1458-1463.

8. Auer P, Cesa-Bianchi N, Fischer P: Finite-time analysis of the
multiarmed bandit problem. Mach Learn 2002, 47:235-256.

9. Strehl AL, Littman ML: An analysis of model-based interval
estimation for Markov decision processes. J Comput Syst Sci
2008, 74:1309-1331.

10. Kolter JZ, Ng AY: Near-Bayesian exploration in polynomial
time. Proceedings of the 26th Annual International Conference on
Machine Learning 2009:513-520.

11.
�

Bellemare M, Srinivasan S, Ostrovski G, Schaul T, Saxton D,
Munos R: Unifying count-based exploration and intrinsic
motivation. In Advances in Neural Information Processing
Systems 29. Edited by Lee DD, Sugiyama M, Luxburg UV, Guyon I,
Garnett R. Curran Associates, Inc.; 2016:1471-1479.

This paper studied how counter-based exploration can be applied in
environments characterized by a large state-space (potentially contin-
uous). The basic idea is to learn a density model over the states and use it
to extract counter-like variables that can be used to drive exploration.

12. Ostrovski G, Bellemare MG, van den Oord A, Munos R: Count-
based exploration with neural density models. Proceedings of
the 34th International Conference on Machine Learning
2017:2721-2730. 70.

13. Tang H, Houthooft R, Foote D, Stooke A, Chen OX, Duan Y,
Schulman J, DeTurck F, Abbeel P: #Exploration: a study of
count-based exploration for deep reinforcement learning.
Advances in Neural Information Processing Systems 2017:2753-
2762.

14.
�

Fox L, Choshen L, Loewenstein Y: DORA the explorer: directed
outreaching reinforcement action-selection. International
Conference on Learning Representations 2018.

Standard RL algorithms are designed to maximize not only the immediate
reward but also to take into consideration the long-term consequences of
actions. This paper presents a novel algorithm that is based on a similar
principle for exploration. It introduced a generalization of visit-counters,
such that in states that can lead, in the future, to the exploration of less-
visited states, the generalized counters grow more slowly than in ‘less-
promising’ states. This approach can also be applied for large (or con-
tinuous) problems using function-approximation methods.

15. Oh M, Iyengar G: Directed exploration in PAC model-free
reinforcement learning. arXiv Prepr 2018. arXiv180810552.

Exploration: from machines to humans Fox et al. 109

www.sciencedirect.com Current Opinion in Behavioral Sciences 2020, 35:104–111



16. Tokic M, Palm G: Value-difference based exploration: adaptive
control between epsilon-greedy and softmax. KI 2011:
Advances in Artificial Intelligence. Springer; 2011:335-346.

17. Simmons-Edler R, Eisner B, Yang D, Bisulco A, Mitchell E,
Seung S, Lee D: QXplore: Q-learning Exploration by Maximizing
Temporal Difference Error. 2019.

18. Pathak D, Agrawal P, Efros AA, Darrell T: Curiosity-driven
exploration by self-supervised prediction. Proceedings of the
34th International Conference on Machine Learning 2017:2778-
2787.

19. Burda Y, Edwards H, Storkey A, Klimov O: Exploration by random
network distillation. International Conference on Learning
Representations 2019.

20. Still S, Precup D: An information-theoretic approach to
curiosity-driven reinforcement learning. Theory Biosci 2012,
131:139-148.

21. Little DY, Sommer FT: Learning and exploration in action-
perception loops. Closing Loop Around Neural Syst 2014, 7:37.

22. Houthooft R, Chen X, Duan Y, Schulman J, De Turck F, Abbeel P:
VIME: variational information maximizing exploration.
Advances in Neural Information Processing Systems. 2016:1109-
1117.

23. Even-Dar E, Mansourt Y: Convergence of optimistic and
incremental Q-learning. Advances in Neural Information
Processing Systems. 2002:1499-1506.

24. Tosatto S, D’Eramo C, Pajarinen J, Restelli M, Peters J:
Exploration driven by an optimistic bellman equation.
2019 International Joint Conference on Neural Networks (IJCNN)
2019:1-8.

25. Kearns M, Singh S: Near-optimal reinforcement learning in
polynomial time. Mach Learn 2002, 49:209-232.

26. Brafman RI, Tennenholtz M: R-MAX - a general polynomial time
algorithm for near-optimal reinforcement learning. J Mach
Learn Res 2003, 3:213-231.

27.
�

Gershman SJ: Deconstructing the human algorithms for
exploration. Cognition 2018, 173:34-42.

Do participants utilize directed exploration in two-armed bandit tasks? To
address this question, the effects of uncertainties in the estimated action-
values on participants’ choice behavior were studied. The paper reports
that uncertainty in an action-value affects both the slope of the action-
selection function– an indication for sampling based random exploration,
as well as the bias of the action-selection function – an indication for
directed exploration. The conclusion is that participants’ utilize both
directed-exploration and random-exploration in their learning behavior.

28. Mehlhorn K, Newell BR, Todd PM, Lee MD, Morgan K,
Braithwaite VA, Hausmann D, Fiedler K, Gonzalez C: Unpacking
the exploration–exploitation tradeoff: a synthesis of human
and animal literatures. Decision 2015, 2:191.

29. Schulz E, Franklin NT, Gershman SJ: Finding structure in multi-
armed bandits. Cogn Psychol 2020, 119:101261.

30.
�

Shteingart H, Neiman T, Loewenstein Y: The role of first
impression in operant learning. J Exp Psychol Gen 2013,
142:476-488.

In this paper, the behavior of human participants in a two-armed bandit
task is analyzed. It characterizes non-parametrically the action-selection
function in humans, underlying random exploration. Specifically, while
humans are sensitive to the difference in action-values (as in softmax),
they exhibit substantial exploration even when the difference between
these values is large.

31. Wilson RC, Geana A, White JM, Ludvig EA, Cohen JD: Humans
use directed and random exploration to solve the explore-
exploit dilemma. J Exp Psychol Gen 2014, 143:2074-2081.

32. Sadeghiyeh H, Wang S, Alberhasky MR, Kyllo HM, Shenhav A,
Wilson RC: Temporal discounting correlates with directed
exploration but not with random exploration. Sci Rep 2020,
10:4020.

33. Schulz E, Bhui R, Love BC, Brier B, Todd MT, Gershman SJ:
Structured, uncertainty-driven exploration in real-world

consumer choice. Proc Natl Acad Sci U S A 2019, 116:13903-
13908.

34. Gershman SJ: Uncertainty and exploration. Decision 2019,
6:277-286.

35. Dubey R, Griffiths TL: Reconciling novelty and complexity
through a rational analysis of curiosity. Psychol Rev 2020,
127:455-476.

36. Somerville LH, Sasse SF, Garrad MC, Drysdale AT, Abi Akar N,
Insel C, Wilson RC: Charting the expansion of strategic
exploratory behavior during adolescence. J Exp Psychol Gen
2017, 146:155-164.

37. Frank MJ, Doll BB, Oas-Terpstra J, Moreno F: Prefrontal and
striatal dopaminergic genes predict individual differences in
exploration and exploitation. Nat Neurosci 2009, 12:1062-1068.

38. Gershman SJ, Tzovaras BG: Dopaminergic genes are
associated with both directed and random exploration.
Neuropsychologia 2018, 120:97-104.

39. Tomov MS, Truong VQ, Hundia RA, Gershman SJ: Dissociable
neural correlates of uncertainty underlie different exploration
strategies. Nat Commun 2020, 11:2371.

40. Warren CM, Wilson RC, Wee NJ, Giltay EJ, van Noorden MS,
Cohen JD, Nieuwenhuis S: The effect of atomoxetine on random
and directed exploration in humans. PLoS One 2017, 12:
e0176034.

41. Zajkowski WK, Kossut M, Wilson RC: A causal role for right
frontopolar cortex in directed, but not random, exploration.
eLife 2017, 6:e27430.

42. Wiehler A, Chakroun K, Peters J: Attenuated directed
exploration during reinforcement learning in gambling
disorder. bioRxiv 2019 http://dx.doi.org/10.1101/823583.

43. Javadi A-H, Patai EZ, Margois A, Tan H-RM, Kumaran D,
Nardini M, Penny W, Duzel E, Dayan P, Spiers HJ: Spotting the
path that leads nowhere: modulation of human theta and alpha
oscillations induced by trajectory changes during navigation.
bioRxiv 2018 http://dx.doi.org/10.1101/301697.

44. Elber-Dorozko L, Loewenstein Y: Striatal action-value neurons
reconsidered. eLife 2018, 7:e34248.

45. Shteingart H, Loewenstein Y: Reinforcement learning and
human behavior. Curr Opin Neurobiol 2014, 25:93-98.

46. Mongillo G, Shteingart H, Loewenstein Y: The misbehavior of
reinforcement learning. Proc IEEE 2014, 102:528-541.

47. Loewenstein Y, Seung HS: Operant matching is a generic
outcome of synaptic plasticity based on the covariance
between reward and neural activity. PNAS 2006, 103:15224-
15229.

48. ICML: Learning without state-estimation in partially
observable Markovian decision processes. Proceedings of the
Eleventh International Conference on International Conference on
Machine Learning 1994:284-292.

49. Loewenstein Y, Prelec D, Seung HS: Operant matching as a nash
equilibrium of an intertemporal game. Neural Comput 2009,
21:2755-2773.

50. Oskarsson AT, Van Boven L, McClelland GH, Hastie R: What’s
next? Judging sequences of binary events. Psychol Bull 2009,
135:262-285.

51. Neiman T, Loewenstein Y: Reinforcement learning in
professional basketball players. Nat Commun 2011, 2:569.

52.
�

Morse EB, Runquist WN: Probability-matching with an
unscheduled random sequence. Am J Psychol 1960, 73:603-
607.

This paper describes participants’ repeated choice behavior in two, very
similar, two-alternative choice tasks. In the first, participants were
instructed to predict whether a rod that is dropped would cross lines
drawn on the floor. In the second, they had to predict which of two bulbs
would turn on in the trial. Despite the fact that both groups of participants
observed the exact same sequence of binary events, their behaviors
differed. They tended to maximize in the first task and to probability-

110 Curiosity (Explore versus exploit)

Current Opinion in Behavioral Sciences 2020, 35:104–111 www.sciencedirect.com



match in the second. These results highlight the importance of a world
model in learning.

53.
�

Findling C, Skvortsova V, Dromnelle R, Palminteri S, Wyart V:
Computational noise in reward-guided learning drives
behavioral variability in volatile environments. Nat Neurosci
2019, 22:2066-2077.

Non-greedy choices in a two-armed bandit task experiment are typically
interpreted as reflecting exploration. By comparing variability in a partial-
feedback task to that in a full-feedback task (in which no exploration is
expected), it is shown that the majority of non-greedy decisions stem from
learning noise, rather than reflecting exploration.

54. Ng AY, Russell SJ: Algorithms for inverse reinforcement
learning. In Proceedings of the Seventeenth International
Conference on Machine Learning; Morgan Kaufmann Publishers
Inc.: 2000:663-670.

55. Dan O, Loewenstein Y: From choice architecture to choice
engineering. Nat Commun 2019, 10:2808.

56. Dubey R, Agrawal P, Pathak D, Griffiths TL, Efros AA:
Investigating human priors for playing video games.
Proceedings of the 35th International Conference on Machine
Learning 2018:1349-1357. PMLR 80.

The authors systematically modified video-games’ environment in order
to mask visual information that could be used as priors. It turns out the
human participants’ learning in the game heavily relies on such priors.
Specifically, they exhibit different patterns of learning and exploration in
the ‘masked’ conditions. By contrast, artificial agents are largely unaf-
fected by the masking of almost all visual priors.

57. Wu CM, Schulz E, Speekenbrink M, Nelson JD, Meder B:
Generalization guides human exploration in vast decision
spaces. Nat Hum Behav 2018, 2:915-924.

58. Arterberry ME, Bornstein MH: Three-month-old infants’
categorization of animals and vehicles based on static and
dynamic attributes. J Exp Child Psychol 2001, 80:333-346.

59. Setoh P, Wu D, Baillargeon R, Gelman R: Young infants have
biological expectations about animals. Proc Natl Acad Sci U S A
2013, 110:15937-15942.

60. Mobbs D, Trimmer PC, Blumstein DT, Dayan P: Foraging for
foundations in decision neuroscience: insights from ethology.
Nat Rev Neurosci 2018, 19:419-427.

61. Kolling N, Akam T: (Reinforcement?) Learning to forage
optimally. Curr Opin Neurobiol 2017, 46:162-169.

62. Trapanese C, Meunier H, Masi S: What, where and when: spatial
foraging decisions in primates. Biol Rev 2019, 94:483-502.

63. Charnov EL: Optimal foraging, the marginal value theorem.
Theor Popul Biol 1976, 9:129-136.

64. Sharot T, Riccardi AM, Raio CM, Phelps EA: Neural mechanisms
mediating optimism bias. Nature 2007, 450:102-105.

65. Berlyne DE: Curiosity and exploration. Science 1966, 153:25-33.

66. Voss H-G, Keller H: Curiosity and Exploration Theories and Results.
Elsevier Inc.; 1983.

67. Kashdan TB, Stiksma MC, Disabato DJ, McKnight PE, Bekier J,
Kaji J, Lazarus R: The five-dimensional curiosity scale:
capturing the bandwidth of curiosity and identifying four
unique subgroups of curious people. J Res Pers 2018, 73:130-
149.

68. Berlyne DE: A theory of human curiosity. Br J Psychol Gen Sect
1954, 45:180-191.

69. Smock CD, Holt BG: Children’s reactions to novelty: an
experimental study of “curiosity motivation”. Child Dev 1962,
33:631-642.

70. Gottlieb J, Oudeyer P-Y: Towards a neuroscience of active
sampling and curiosity. Nat Rev Neurosci 2018, 19:758-770.

71. Oudeyer P-Y, Kaplan F: What is intrinsic motivation? A typology
of computational approaches. Front Neurorobot 2009, 1:6.

72. Barto AG: Intrinsic motivation and reinforcement learning. In
Intrinsically Motivated Learning in Natural and Artificial Systems.
Edited by Baldassarre G, Mirolli M. Berlin Heidelberg: Springer;
2013:17-47.

73. Loewenstein G: The psychology of curiosity: a review and
reinterpretation. Psychol Bull 1994, 116:75-98.

74. Kang MJ, Hsu M, Krajbich IM, Loewenstein G, McClure SM,
Wang JT, Camerer CF: The wick in the candle of learning:
epistemic curiosity activates reward circuitry and enhances
memory. Psychol Sci 2009, 20:963-973.

75. Http://clipart-library.com/gold-cliparts.html, Https://www.
pinterest.cl/pin/240450067594092613/, Https://www.clipart.
email/download/11007237.html, Https://www.pngegg.com/en/
png-bzpdh: Clipart websites. 2020.

Exploration: from machines to humans Fox et al. 111

www.sciencedirect.com Current Opinion in Behavioral Sciences 2020, 35:104–111





תקציר

עשויה אקספלורציה מורכבות, בסביבות וטעיה. ניסוי בעזרת בלמידה מרכזי מרכיב היא אקספלורציה

השלכות רבים, במקרים יש, הסוכן על-ידי המתקבלות שלהחלטות כיוון מיוחד, באופן מאתגרת להיות

להצליח מנת על כך, יעילה. אקספלורציה להבטיח מנת על בחשבון להילקח צריכות אשר טווח ארוכות

צורך יש הסביבה את ללמוד שכדי בעוד הסביבה, של למידה נדרשת יעיל, באופן הסביבה את לחקור

מלכתחילה. אותה להכיר

האקספלורציה. אתגר עם להתמודדות אלגוריתמיות גישות שתי מציג זו דוקטורט עבודת של הראשון החלק

ב"למידה האתגר לפיה האינטואיציה על בהתבסס "אי-וודאות", מ המונעת אקספלורציה היא הראשונה

הגישה חיזוק. למידת של בבעיות פונקציית-ערך שבלמידת לאתגר אנלוגי הוא אקפסלורציה" עבור

מטרה פונקציית שממקסמת ככזו מוגדרת אופטימלית אקספלורציה ובה נורמטיבית, גישה היא השניה

על- שמושרית כפי הסביבה, של המצבים-פעולות במרחב הביקורים התפלגות של האנטרופיה מסויימת:

אנושית אקספלורציה נחקרה ובו התנהגותי, מחקר הוא זו עבודה של השני החלק הסוכן. של ההתנהגות ידי

לתוצאות רגישים בני-אדם כי מודגם זה במחקר המודלים. בעזרת זוהו אשר החישוביים העקרונות לאור

אקספלורציה אסטרטגיות על מעידות אלו תוצאות אקספלורציה. במטלות בחירותיהם של הטווח ארוכות

מקומיים באומדים לשימוש בניגוד המצבים-פעולות, במרחב מסלולים לאורך אי-וודאות "מפעפעות" אשר

אי-וודאות. של בלבד

ii





של בהדרכתו נעשתה זו עבודה

לוינשטיין יונתן פרופסור





מורכבות: בסביבות אקספלורציה

אנושית והתנהגות חישובי מידול

לפילוסופיה דוקטור תואר קבלת לשם חיבור

מאת

פוקס ליאור

בירושלים העברית האוניברסיטה לסנאט הוגש
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